Fundamentals of Optical Sciences

WS 2015/2016
6 . Exercise
23.11.2015

Lecture: Prof. Dr. Alejandro Saenz, Prof. Dr. Oliver Benson
Prepare your answers for the exercise on 30.11.2015.

Exercise 1

Consider a two-level atom and its interaction with the electric component of an electromagnetic field $\vec{E}(t)=E_{0} \cos (\omega t) \vec{\varepsilon}$ in the semiclassical description. The full Hamilton operator \hat{H} is

$$
\hat{\mathrm{H}}=\hat{\mathrm{H}}_{0}+\hat{\mathrm{H}}_{1}
$$

in which $\hat{\mathrm{H}}_{0}$ is the atomic Hamiltonian and $\hat{\mathrm{H}}_{1}=-e \underline{\hat{\mathrm{r}}} \vec{E}(t)$ describes the Hamiltonian of the radiation field. The atom has two stationary, orthonormal eigenstates of $\hat{\mathrm{H}}_{0},|g\rangle$ ("ground") and $|e\rangle$ ("excited") with the eigenvalues ω_{g} and ω_{e} respectively. Determine in the following the solution of the time-dependent Schrödinger equation

$$
\mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=\hat{\mathrm{H}}|\psi(t)\rangle
$$

a) Show that the Hamilton operator can be represented by the following expression

$$
\hat{\mathrm{H}}=\hbar \omega_{g}|g\rangle\langle g|+\hbar \omega_{e}|e\rangle\langle e|+E_{0} \cos \omega t\left[d_{g, e}|g\rangle\langle e|+d_{e, g}|e\rangle\langle g|\right]
$$

with the dipole moments $d_{i, j}=-e\langle i| \vec{\varepsilon} \cdot \underline{\hat{r}}|j\rangle$.
Hint: The basis $\{|g\rangle,|e\rangle\}$ is complete.
b) Use the following ansatz for the wavefunction of the system

$$
\begin{aligned}
\Psi(\vec{r}, t) & =c_{g}(t) \Phi_{g}(\vec{r}) e^{i \omega_{g} t}+c_{e}(t) \Phi_{e}(\vec{r}) e^{i \omega_{e} t} \\
|\Psi(t)\rangle & =C_{g}(t)|g\rangle+C_{e}(t)|e\rangle .
\end{aligned}
$$

Show that the equations for the coefficients result in

$$
\begin{aligned}
& \mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} C_{g}(t)=\hbar \omega_{g} C_{g}+E_{0} \cos (\omega t) d_{g, e} C_{e} \\
& \mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} C_{e}(t)=\hbar \omega_{g} C_{e}+E_{0} \cos (\omega t) d_{e, g} C_{g} .
\end{aligned}
$$

c) Now, introduce the coefficients

$$
\begin{aligned}
& c_{e}(t)=C_{e}(t) \mathrm{e}^{\mathrm{i} \omega_{e} t} \\
& c_{g}(t)=C_{g}(t) \mathrm{e}^{\mathrm{i} \omega_{g} t}
\end{aligned}
$$

as an ansatz to show that

$$
\begin{aligned}
& \mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} c_{g}(t)=\frac{E_{0}}{2} d_{g, e} c_{e}(t)\left[e^{\mathrm{i}\left(-\omega_{e, g}+\omega\right) t}+e^{-\mathrm{i}\left(\omega_{e, g}+\omega\right) t}\right] \\
& \mathrm{i} \hbar \frac{\mathrm{~d}}{\mathrm{~d} t} c_{e}(t)=\frac{E_{0}}{2} d_{e, g} c_{g}(t)\left[e^{\mathrm{i}\left(\omega_{e, g}+\omega\right) t}+e^{\mathrm{i}\left(\omega_{e, g}-\omega\right) t}\right]
\end{aligned}
$$

Here: $\omega_{e, g}=\omega_{e}-\omega_{g}$.
d) Transform to a rotating coordinate system by introducing the amplitudes

$$
\begin{aligned}
& \tilde{c}_{g}(t)=e^{-\mathrm{i} \frac{\delta t}{2}} c_{g}(t) \\
& \tilde{c}_{e}(t)=e^{+\mathrm{i} \frac{\delta t}{2}} c_{e}(t),
\end{aligned}
$$

where the detuning δ is given by $\delta=\omega-\omega_{e, g}$. The commonly used rotating-wave approximation (RWA) neglects the faster oscillating terms with $\omega_{e, g}+\omega$ compared to $\omega_{e, g}-\omega$. Define the Rabi frequency $\Omega_{0}=\frac{d_{e, g} E_{0}}{\hbar}$ and use the RWA to show that

$$
\frac{d}{d t}\binom{\tilde{c}_{g}(t)}{\tilde{c}_{e}(t)} \approx-\frac{\mathrm{i}}{2}\left(\begin{array}{cc}
\delta & \Omega_{0} \\
\Omega_{0} & -\delta
\end{array}\right)\binom{\tilde{c}_{g}(t)}{\tilde{c}_{e}(t)} .
$$

e) Show that the system of equations decouples for the second derivates,

$$
\frac{d^{2}}{d t^{2}}\binom{\tilde{c}_{g}(t)}{\tilde{c}_{e}(t)} \approx-\frac{1}{4}\left(\begin{array}{cc}
\delta^{2}+\Omega_{0}^{2} & 0 \\
0 & \delta^{2}+\Omega_{0}^{2}
\end{array}\right)\binom{\tilde{c}_{g}(t)}{\tilde{c}_{e}(t)} .
$$

f) Show that the solutions of these differential equations are given by

$$
\begin{aligned}
& \tilde{c}_{g}(t) \approx-\mathrm{i} \frac{\Omega_{0}}{\Omega} \sin \left(\frac{\Omega t}{2}\right) \tilde{c}_{e}(0)+\left[\cos \left(\frac{\Omega t}{2}\right)-\mathrm{i} \frac{\delta}{\Omega} \sin \left(\frac{\Omega t}{2}\right)\right] \tilde{c}_{g}(0) \\
& \tilde{c}_{e}(t) \approx-\mathrm{i} \frac{\Omega_{0}}{\Omega} \sin \left(\frac{\Omega t}{2}\right) \tilde{c}_{g}(0)+\left[\cos \left(\frac{\Omega t}{2}\right)+\mathrm{i} \frac{\delta}{\Omega} \sin \left(\frac{\Omega t}{2}\right)\right] \tilde{c}_{e}(0)
\end{aligned}
$$

with the generalized Rabi frequencies $\Omega=\sqrt{\delta^{2}+\Omega_{0}^{2}}$.
g) What are the consequences of the result in f) for the time-dependent population $P_{e}=\left|\tilde{c}_{e}(t)\right|^{2}$ of the excited state when the system is at the beginning in its ground state
$\left(c_{g}(t=0)=1, c_{e}(t=0)=0\right) ?$

Exercise 2

Consider an atom interacting with an oscillating light field with constant amplitude and frequency ω. The dipole approximation is used for describing the atom-light interaction in the semiclassical treatment. Using pertubation theory the transition probability can be expressed in the form

$$
\begin{equation*}
P(t) \propto \frac{\sin ^{2}\left(\frac{1}{2}\left(\omega_{m, k}-\omega\right) t\right)}{\left(\omega_{m, k}-\omega\right)^{2}} \tag{1}
\end{equation*}
$$

where $\omega_{m, k}=\omega_{m}-\omega_{k}$ is the transition frequency between the states φ_{m} and φ_{k} which are the eigenfunctions of the unperturbed Hamiltonian. The behaviour of this function shall be investigated in the following.
a) Plot function (1) over the detuning $\delta=\omega_{m, k}-\omega$ for (i) $t=0.5 \mathrm{~s}$, (ii) $t=1 \mathrm{~s}$, (iii) $t=5 \mathrm{~s}$, (iv) $t=10 \mathrm{~s}$ using a plotting program of your choice and explain the behaviour.
b) For nearly resonant light pulses $\left(\omega \approx \omega_{m, k}\right)$ the model of an effective two-level atom is appropriate. Why?
c) Consider the hdyrogen atom interacting with a laser pulse with a wavelength of 630 nm . Which transitions in a hydrogen atom can be excited with a 1 fs laser pulse?
Hint: Balmer series!!!

