Fundamentals of Optical Sciences

WS 2015/2016 9. Exercise 14.12.2015

Lecture: Prof. Dr. Alejandro Saenz, Prof. Dr. Oliver Benson

Prepare your answers for the exercise on 04.01.2016.

Exercise 1

Consider an ensemble of two-level atoms with the ground state $|g\rangle$ and excited state $|e\rangle$.

- a) Give the density matrix for the following cases and draw the associated Bloch vector:
 - i. All atoms are in the ground state $|g\rangle$.
 - ii. The atoms from i) interact with a resonant π -pulse.
 - iii. The atoms from i) interact with a resonant $\pi/2$ -pulse.
 - iv. One atom is in the ground state $|g\rangle$ and one in the excited state $|e\rangle$.
- b) Which measurable properties are different in the cases iii) and iv)?
- c) Now we include decay processes, e.g. spontaneous emission from state $|e\rangle$ to $|g\rangle$ with a decay constant γ . Therefore the optical Bloch equations have to be used. The equations

$$\dot{u} = \delta v - \frac{\gamma}{2} u$$
$$\dot{v} = -\delta u + \Omega_{ab} \cdot w - \frac{\gamma}{2} v$$
$$\dot{w} = -\Omega_{ab} v - \gamma (w - 1)$$

with the auxiliary quantities

$$u = \rho_{12} e^{-i\delta t} + \rho_{21} e^{i\delta t}$$
$$v = -i \left(\rho_{12} e^{-i\delta t} - \rho_{21} e^{i\delta t}\right)$$
$$w = \rho_{11} - \rho_{22}$$

describe the excitation of a two level system exposed to radiation close to resonance frequency, while accounting for spontaneous emission. Derive the steady-state equations using these equations. Write the solution obtained into vectorial form. Furthermore, derive an expression for the steady-state population in the $|b\rangle$ -state. What happens in the limit of a strong driving field?

Exercise 2

In a Ramsey-type interference experiment two-level atoms interact with a $\pi/2$ pulse followed by a second $\pi/2$ pulse separated by a "delay" time T. During T the excited state accumulates a phase factor of $e^{i\delta T}$. Show that the transition probability for this type of experiment can be written as

$$P_e = 4 \frac{\Omega_0^2}{\Omega^2} \sin^2\left(\frac{\Omega\tau}{2}\right) \left[\cos\left(\frac{\delta T}{2}\right)\cos\left(\frac{\Omega\tau}{2}\right) - \frac{\delta}{\Omega}\sin\left(\frac{\delta T}{2}\right)\sin\left(\frac{\Omega\tau}{2}\right)\right]^2$$

where τ is the interaction time of each of the two laser pulses of Rabi frequency Ω_0 and detuning δ . Use the general solutions

$$c_g(t) = e^{i\delta\tau/2} \left[c_g(0) \cos\left(\frac{1}{2}\Omega t\right) - \frac{i}{\Omega} \left[\delta c_g(0) + \Omega_0 c_e(0) \right] \sin\left(\frac{1}{2}\Omega t\right) \right]$$
$$c_e(t) = e^{i\delta\tau/2} \left[c_e(0) \cos\left(\frac{1}{2}\Omega t\right) + \frac{i}{\Omega} \left[\delta c_e(0) - \Omega_0 c_g(0) \right] \sin\left(\frac{1}{2}\Omega t\right) \right]$$

for the amplitudes. Assume that all atoms are initially in the ground state. The calculation is simplified, if the substitutions $\tau' = \Omega \tau/2$ and $T' = \delta T$ are used. *Reminder:* The generalized Rabi frequency is $\Omega = \sqrt{\Omega_0^2 + \delta^2}$.

Exercise 3

- a) Consider a Fabry-Perot (planar) cavity of length 10 cm. Plot the cavity circulating intensity as a function of frequency for different amounts of loss in the cavity (for example, consider various mirror reflectivities r = 0.2, r = 0.5, r = 0.8, r = 0.99, corresponding to different finesse values). The plot should span several FSRs on the x axis. To see the different plots on the same scale, you can divide by the maximum intensity at each reflectivity. Assume an initial intensity of 1 W/m².
- b) Name 3 other possible sources of loss in the cavity.
- c) Consider a planar cavity operating at a nominal wavelength of 780 nm. The cavity length is 5 cm, but can be changed precisely (on a sub-wavelength scale) using a piezo stack attached to one of the mirrors. The cavity transmission is monitored as the cavity length d is scanned by translating the mirror. Below is the measured transmission spectrum:

And here is the same set of data, with the horizontal axis zoomed by a factor of 20:

From these plots, find the FSR, finesse, resolution $\delta\nu_{\rm FWHM},$ and Q-factor of the cavity.

Exercise 4

One method for boosting the intensity of continuous-wave (cw) light is to use a cavity dumper, which is a ring cavity with an optical switch as shown.

The cavity dumper operates as follows: the input light is turned on, and the circulating light builds up in the cavity to a large intensity. Then the optical switch is activated, deflecting the circulating intensity out of the cavity.

- a) What are the round-trip time and free spectral range? Assume the beam path is a rectangle of dimensions 12×20 cm. Also model the optical switch as a block of glass (n = 1.5) of length 2 cm.
- b) What are the survival probability, finesse, and photon lifetime of the cavity? Assume an intensity reflection coefficient of 99.8% for all the mirrors and an intensity loss of 0.2% per pass due to the switch.
- c) Suppose the input power is 1 W and that the circulating power is allowed to build up to its steady-state value. What are the duration and power of the output pulse when the switch is activated? Assume the switch couples all the light out of the cavity.
- d) What is the maximum repetition rate of the cavity dumper if a 50 W output pulse is desired?