Direkt zum InhaltDirekt zur SucheDirekt zur Navigation
▼ Zielgruppen ▼

Humboldt-Universität zu Berlin - Mathematisch-Naturwissen­schaft­liche Fakultät - Nanooptik

Humboldt-Universität zu Berlin | Mathematisch-Naturwissen­schaft­liche Fakultät | Institut für Physik | Nanooptik | Publications | Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold

Ulrike Herzog, Matthias Scholz, and Oliver Benson (2008)

Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold

Physical Review A (Atomic, Molecular, and Optical Physics), 77(2):023826.

We present a quantum-theoretical treatment of biphoton generation in single-resonant type-II parametric down-conversion. The nonlinear medium is continuously pumped and is placed inside a cavity which is resonant for the signal field, but nonresonant for the idler deflected by an intracavity polarizing beam splitter. The intensity of the classical pump is assumed to be sufficiently low in order to yield a biphoton production rate that is small compared to the cavity loss rate. Explicit expressions are derived for the rate of biphoton generation and for the biphoton wave function. The output spectra of the signal and idler field are determined, as well as the second-order signal-idler cross-correlation function which is shown to be asymmetric with respect to the time delay. Due to frequency entanglement in the signal-idler photon pair, the idler spectrum is found to reveal the longitudinal mode structure of the cavity, even though the idler field is not resonant.