Low-energy properties of hadrons in the relativistic quark model

Rudolf Faustov

Dorodnicyn Computing Centre RAS, Moscow

(in collaboration with Dietmar Ebert and Vladimir Galkin)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Relativistic quark model
- Spectroscopy of mesons, tetraquarks and baryons
- Electroweak properties of hadrons
- Conclusions

Relativistic quark model (RQM)

Schrödinger-like quasipotential equation: (Logunov, Tavkhelidze)

$$\left(\frac{b^2(M)}{2\mu_R}-\frac{\mathbf{p}^2}{2\mu_R}\right)\Psi_M(\mathbf{p})=\int\frac{d^3q}{(2\pi)^3}V(\mathbf{p},\mathbf{q};M)\Psi_M(\mathbf{q})$$

 $\mathbf{p} = (\mathbf{p}_2 - \mathbf{p}_1)/2$ is relative momentum of quarks M is bound state mass $(M = E_1 + E_2)$ μ_R is relativistic reduced mass:

$$\mu_R = \frac{E_1 E_2}{E_1 + E_2} = \frac{M^4 - (m_1^2 - m_2^2)^2}{4M^3}$$

 $b^2(M)$ is relative momentum squared in center-of-mass frame on mass shell:

$$b^{2}(M) = \frac{[M^{2} - (m_{1} + m_{2})^{2}][M^{2} - (m_{1} - m_{2})^{2}]}{4M^{2}}$$

 $E_{1,2}$ are energies in center-of-mass frame:

$$E_1 = \frac{M^2 - m_2^2 + m_1^2}{2M}, \quad E_2 = \frac{M^2 - m_1^2 + m_2^2}{2M}$$

Quark interaction potential in hadrons

$q\bar{q}$ interaction in meson

consists of

- one-gluon exchange potential V^{Coul} with Lorentz-vector structure, which dominates at small distances in QCD;
- long-range linearly rising scalar confining potential $V_{
 m conf}^S$ and
- long-range linearly rising vector confining potential $V^V_{\rm conf},$ which dominate at large distances.

《曰》 《圖》 《臣》 《臣》

- It is assumed that
 - quarks have long-range effective anomalous chromomagnetic moment κ .
 - quarks have fixed constituent masses

Projection on positive-energy states leads to quasipotential:

$$V(\mathbf{p},\mathbf{q};M) = \bar{u}_1(p)\bar{u}_2(-p)\left\{\frac{4}{3}\alpha_s D_{\mu\nu}(\mathbf{k})\gamma_1^{\mu}\gamma_2^{\nu} + V_{\rm conf}^V(\mathbf{k})\Gamma_1^{\mu}\Gamma_{2;\mu} + V_{\rm conf}^S(\mathbf{k})\right\}u_1(q)u_2(-q)$$

 $\mathbf{k} = \mathbf{p} - \mathbf{q}$ $D_{\mu\nu}(\mathbf{k})$ is (perturbative) gluon potential $\Gamma_{\mu}(\mathbf{k})$ is effective vertex of long-range vector interaction containing Pauli term:

$$\Gamma_{\mu}(\mathbf{k}) = \gamma_{\mu} + \frac{i\kappa}{2m} \sigma_{\mu\nu} k^{\nu},$$

• κ is nonperturbative anomalous chromomagnetic moment of quark,

$$u^{\lambda}(p) = \sqrt{rac{\epsilon(p)+m}{2\epsilon(p)}} \left(egin{array}{c} 1 \ rac{\sigma \mathbf{p}}{\epsilon(p)+m} \end{array}
ight) \chi^{\lambda}, \qquad \epsilon(p) = \sqrt{\mathbf{p}^2+m^2}.$$

• Quasipotential $V(\mathbf{p}, \mathbf{q}; M)$ is strongly nonlocal in coordinate space

- Lorentz-structure of confining potential is mixture of vector $V_{\rm conf}^V$ and scalar $V_{\rm conf}^S$ interactions

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うへで

In nonrelativistic limit vector and scalar potentials in coordinate space

$$V_{\text{conf}}^{V}(r) = (1-\varepsilon)(Ar+B),$$

$$V_{\text{conf}}^{S}(r) = \varepsilon(Ar+B),$$

€ is mixing coefficient

$$V_{\mathrm{conf}}(r) = V_{\mathrm{conf}}^{S}(r) + V_{\mathrm{conf}}^{V}(r) = Ar + B_{\mathrm{conf}}^{S}(r)$$

Total $q\bar{q}$ potential

$$V_{q\bar{q}}(r) = V^{\mathrm{Coul}}(r) + V_{\mathrm{conf}}(r) = rac{4}{3}rac{lpha_s}{r} + Ar + B$$

Running coupling constant $\alpha_s \equiv \alpha_s(\mu^2)$:

a) heavy hadrons

$$lpha_{\mathfrak{s}}(\mu^2) = rac{4\pi}{eta_0 \ln(\mu^2/\Lambda^2)},$$

b) light hadrons (with freezing)

$$lpha_{s}(\mu^{2}) = rac{4\pi}{eta_{0}\lnrac{\mu^{2}+M_{0}^{2}}{\Lambda^{2}}}, \qquad eta_{0} = 11-rac{2}{3}n_{f},$$

 $\mu = 2m_1m_2/(m_1 + m_2), \qquad M_0 = 2.24\sqrt{A} \approx 0.95 \text{ GeV}$

◆□> <□> <=> <=> <=> <=> <=> <</p>

qq interaction in diquark

Potential of quark-quark interaction

$$V_{qq} = V_{q\bar{q}}/2$$

$$V(\mathbf{p}, \mathbf{q}; M) = \bar{u}_1(p)\bar{u}_2(-p)\frac{1}{2} \left[\frac{4}{3}\alpha_s D_{\mu\nu}(\mathbf{k})\gamma_1^{\mu}\gamma_2^{\nu} + V_{\rm conf}^V(\mathbf{k})\Gamma_1^{\mu}\Gamma_{2;\mu} + V_{\rm conf}^S(\mathbf{k})\right] u_1(q)u_2(-q).$$

Quark-diquark interaction in baryon

 $\langle d(P)|J_{\mu}|d(Q)\rangle$ is vertex of diquark-gluon interaction

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● 目 ● のへで

Diquark-antidiquark interaction in tetraquark

$$V(\mathbf{p}, \mathbf{q}; M) = \frac{\langle d_1(P_1) | J_{\mu} | d_1(Q_1) \rangle}{2\sqrt{E_{d_1}(p)E_{d_1}(q)}} \frac{4}{3} \alpha_s D^{\mu\nu}(\mathbf{k}) \frac{\langle d_2(P_2) | J_{\nu} | d_2(Q_2) \rangle}{2\sqrt{E_{d_2}(p)E_{d_2}(q)}} + \psi^*_{d_1}(P_1) \psi^*_{d_2}(P_2) \left[J_{d_1;\mu} J^{\mu}_{d_2} V^V_{\text{conf}}(\mathbf{k}) + V^S_{\text{conf}}(\mathbf{k}) \right] \psi_{d_1}(Q_1) \psi_{d_2}(Q_2).$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Free parameters of the model:

- constituent quark masses: $m_{u,d} = 0.33$ GeV, $m_s = 0.50$ GeV, $m_c = 1.55$ GeV, $m_b = 4.88$ GeV;
- slope of linear confining potential $A = 0.18 \text{ GeV}^2$;
- constant *B* in confining potential B = -0.30 GeV;
- scale Λ of the running constant α_s : $\Lambda = 0.169 \text{ GeV}$ for heavy hadrons $\Lambda = 0.413 \text{ GeV}$ for light hadrons;
- mixing coefficient of vector and scalar confining potentials $\varepsilon = -1$;
- long-range anomalous chromomagnetic moment of quark $\kappa = -1$;

All free parameters (10) were fixed from analysis of meson mass spectra and radiative decays.

• Values of parameters ε and κ are confirmed by comparison with predictions of heavy quark effective theory (HQET), instanton vacuum and flux tube models.

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うへで

Matrix element of current between bound states

Matrix element of current between bound states in quasipotential approach

$$\langle A|J_{\mu}(0)|B
angle = \int rac{d^3pd^3q}{(2\pi)^6} ar{\Psi}_{AP}(\mathbf{p})\Gamma_{\mu}(\mathbf{p},\mathbf{q})\Psi_{BQ}(\mathbf{q}).$$

In initial approximation

(日) (종) (종) (종) (종) (종)

• Relativistic transformation of wave function from center-of-mass to moving frame:

a) bound system of quarks

$$\Psi_{\mathbf{P}}(\mathbf{p}) = D_1^{1/2}(R_{L_{\mathbf{P}}}^W) D_2^{1/2}(R_{L_{\mathbf{P}}}^W) \Psi_{\mathbf{0}}(\mathbf{p}),$$

 $\Psi_0(\mathbf{p}) \equiv \Psi_M(\mathbf{p})$ is wave function in center-of-mass frame; R^W is Wigner rotation, L_P is Lorentz transformation from center-of-mass to moving frame, $D^{1/2}(R)$ are rotation matrices

$$\begin{split} & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} D_{1,2}^{1/2}(R_{L_{\mathbf{P}}}^{W}) = S^{-1}(\mathbf{p}_{1,2})S(\mathbf{P})S(\mathbf{p}), \\ & S(\mathbf{p}) = \sqrt{\frac{\epsilon(p)+m}{2m}} \left(1 + \frac{\alpha \mathbf{p}}{\epsilon(p)+m}\right). \end{split}$$

b) quark-diquark bound system

$$\Psi_{B_Q \mathbf{P}}(\mathbf{p}) = D_Q^{1/2}(R_{L_{\mathbf{p}}}^W) D_d^{\mathcal{I}}(R_{L_{\mathbf{p}}}^W) \Psi_{B_Q \mathbf{0}}(\mathbf{p}), \qquad \mathcal{I} = 0, 1,$$

$$D^{\mathcal{I}}(R^{W}) = \begin{cases} 1 & \text{for scalar diquark } \mathcal{I} = 0 \\ R^{W} & \text{for axial vector diquark } \mathcal{I} = 1 \end{cases}$$

Hadron spectroscopy

• for heavy (b, c) quarks expansion in v/c or $1/m_Q$ can be applied

• light (u, d, s) quarks are highly relativistic $(v/c \sim 0.7 \div 0.8)$ expansion in $1/m_q$ (or v/c) is not applicable and fully relativistic treatment is necessary. This leads to the quasipotential which is nonlocal in coordinate space

• substitution of light quark energy $\epsilon_q(p)$ by energy E_q

$$\epsilon_q(p)=\sqrt{m_q^2+{f p}^2}
ightarrow E_q=rac{M^2-m_Q^2+m_q^2}{2M}$$

makes quasipotential local, but nonlinearly dependent on hadron mass M

- effective methods of numerical solution of quasipotential equation were developed
- freezing of running constant α_s for light hadrons is taken into account
- baryons are considered in quark-diquark approximation (successive solution of 2 two-body problems)

• internal structure of diquark is taken into account with the help of form factor of diquark-gluon interaction

Charmonium, bottomonium and B_c meson spectroscopy

State	Meson	Theory	Experiment
n ^{2S+1} L _J		5	PDG
$1^{1}S_{0}$	η_c	2.979	2.9804
$1 {}^{3}S_{1}$	J/Ψ	3.096	3.096916
$1 {}^{3}P_{0}$	χ_{c0}	3.424	3.41476
$1 {}^{3}P_{1}$	χ_{c1}	3.510	3.51066
$1 {}^{3}P_{2}$	χ_{c2}	3.556	3.55620
$1 {}^{1}P_{1}$	h_c	3.526	3.52567
$2 {}^{1}S_{0}$	η_c'	3.633	3.638(4)
$2^{3}S_{1}$	Ψ'	3.686	3.686093
$1 {}^{3}D_{1}$		3.798	3.7711(24)
$1 {}^{3}D_{2}$		3.813	
1 ³ D ₃		3.815	
$1 {}^{1}D_2$		3.811	
2 ³ P ₀	χ'_{c0}	3.854	
2 ³ P1	χ'_{c1}	3.929	
2 ³ P ₂	χ'_{c2}	3.972	3.929(5)?
2 ¹ P ₁	h_c^2	3.945	
3 ¹ S ₀	η_c^{μ}	3.991	3.943(12)?
$3^{3}S_{1}$	Ψ″	4.088	4.039(1)

Table: Charmonium mass spectrum (in GeV).

$$\begin{split} &M_{\rm cog}^{\rm exp}(1^3 P_J) = 3525.36~{\rm MeV};\\ &M_{\rm cog}^{\rm th}(1^3 P_J) = 3525~{\rm MeV} \end{split}$$

 $M_{h_c}^{exp}(1^1P_1) - M_{cog}^{exp}(1^3P_J) = 0.31 \text{ MeV}$

State	Meson	Theory	Experiment
$n^{2S+1}L_J$	meson	Theory	PDG
$1 {}^{1}S_{0}$	η_b	9.400	9.3929(60)*
$1 {}^{3}S_{1}$	Ŷ	9.460	9.46030
$1 {}^{3}P_{0}$	χ_{b0}	9.863	9.85944
$1 {}^{3}P_{1}$	χы1	9.892	9.89278
$1 {}^{3}P_{2}$	χь2	9.913	9.91221
$1 {}^{1}P_{1}$	h _b	9.901	
$2 {}^{1}S_{0}$	$\eta_{\rm b}^{\prime}$	9.993	
$2^{3}S_{1}$	Ϋ́Υ	10.023	10.02326
$1 {}^{3}D_{1}$		10.153	
$1 {}^{3}D_{2}$		10.158	10.162
$1 {}^{3}D_{3}$		10.162	
$1 {}^{1}D_2$		10.158	
2 ³ P ₀	χ'_{b0}	10.234	10.2325
2 ³ P ₁	χ'_{b1}	10.255	10.25546
2 ³ P ₂	χ_{h2}^{\prime}	10.268	10.26865
2 ¹ P ₁	$\tilde{h'_{h}}$	10.261	
$3^{1}S_{0}$	η_{b}^{H}	10.328	
3 ³ S ₁	Ϋ́ν	10.355	10.3552
	* Ba	Bar 2009	

Table: Bottomonium mass spectrum (in GeV).

State					
n ^{2S+1} L _J	RQM	Eichten et al.	Gershtein et al.	Fulcher	Nusinov et al.
$1 {}^{1}S_{0}$	6.270	6.264	6.253	6.286	\geq 6.2196
$1 {}^{3}S_{1}$	6.332	6.337	6.317	6.341	\geq 6.2786
$1 {}^{3}P_{0}$	6.699	6.700	6.683	6.701	\geq 6.6386
1P1	6.734	6.730	6.717	6.737	\geq 6.7012
$1P1^{'}$	6.749	6.736	6.729	6.760	\geq 6.7012
$1 {}^{3}P_{2}$	6.762	6.747	6.743	6.772	\geq 6.7347
$2 {}^{1}S_{0}$	6.835	6.856	6.867	6.882	
2 ³ S ₁	6.881	6.899	6.902	6.914	
$1 {}^{3}D_{1}$	7.072	7.012	7.008	7.019	
1D2	7.077	7.009	7.001	7.028	
1D2'	7.079	7.012	7.016	7.028	
1 ³ D ₃	7.081	7.005	7.007	7.032	
2 ³ P ₀	7.091	7.108	7.088		
2 <i>P</i> 1	7.126	7.135	7.113		
$2P1^{\prime}$	7.145	7.142	7.124		
2 ³ P ₂	7.156	7.153	7.134		
3 ¹ S ₀	7.193	7.244			
$3^{3}S_{1}$	7.235	7.280			

Table: Bc meson mass spectrum (in GeV).

CDF 2008 value (from $B_c \rightarrow J/\Psi \pi$):

 $M_{B_c} = 6275.6 \pm 2.9 \pm 2.5$ MeV.

Heavy-light meson spectroscopy

$(n^{2S+1}L_J)$	Meson	Theory	Experiment	Meson	Theory	Experiment
$1 {}^{1}S_{0}$	D	1871	1869.62(20)	Ds	1969	1968.49(30)
$1 {}^{3}S_{1}$	D^*	2010	2010.27(17)	D_s^*	2111	2112.3(5)
$1 {}^{3}P_{2}$	D_2^*	2460	2460.1(3.5)	D_{s2}^{*}	2571	2572.8(9)
$1P_1$	$\bar{D_1}$	2426	2423.4(31)	D_{s1}	2536	2535.35(80)
$1P_1$	D_1	2469	2427(40)	D _{s1}	2574	2459.6(6)
$1 {}^{3}P_{0}$	D_0^*	2406	2403(40)	D_{s0}^{*}	2509	2317.8(6)
$2 {}^{1}S_{0}$	Ď	2581		D_s'	2698	
$2^{3}S_{1}$	D*′	2632	2637(9)?	$D_s^{*'}$	2741	2690(7)?

Table: D meson mass spectra (in MeV).

Table: B meson mass spectra (in MeV).

$(n^{2S+1}L_J)$	Meson	Theory	Experiment	Meson	Theory	Experiment
$1^{1}S_{0}$	В	5280	5279.5(3)	Bs	5372	5366.3(6)
$1 {}^{3}S_{1}$	B^*	5326	5325.1(5)	B_s^*	5413	5415.4(1.4)
$1 {}^{3}P_{2}$	B_2^*	5741	5743(5)	B_{s2}^{*}	5842	5839.7(6)
$1P_1$	$\bar{B_1}$	5723	5723.4(2.0)	B _{s1}	5831	5829.4(7)
$1P_1$	B_1	5774		B _{s1}	5865	5853(15)
$1 {}^{3}P_{0}$	B_0^*	5749		B_{s0}^*	5833	
$2 {}^{1}S_{0}$	В'	5890		B_s'	5976	
2 ³ S ₁	$B^{*'}$	5908		B*'	5992	

Heavy-light meson Regge trajectories

Figure: Parent and daughter (J, M^2) Regge trajectories for D (a) and B (b) heavy-light mesons with natural parity. Diamonds are predicted masses. Experimental data are given by dots with error bars. M^2 is in GeV².

(日) (四) (王) (王)

Light meson spectroscopy

Table: Masses of excited light (q = u, d) unflavored mesons (in MeV).

		Theory	Theory Experiment				Theory		Experiment
$n^{2S+1}L_J$	J ^{PC}	$q\bar{q}$	I = 1	mass	<i>I</i> = 0	mass	sīs	I = 0	mass
$1^{1}S_{0}$	0^{-+}	154	π	139.57			743		
$1^{3}S_{1}$	$1^{}$	776	ρ	775.49(34)	ω	782.65(12)	1038	φ	1019.455(20)
$1^{3}P_{0}$	0++	1176	a 0	1474(19)	f_0	1200-1500	1420	f ₀	1505(6)
$1^{3}P_{1}$	1^{++}	1254	a_1	1230(40)	f_1	1281.8(6)	1464	f_1	1426.4(9)
$1^{3}P_{2}$	2++	1317	a 2	1318.3(6)	f_2	1275.1(12)	1529	f_2'	1525(5)
$1^{1}P_{1}$	1^{+-}	1258	b_1	1229.5(32)	h_1	1170(20)	1485	$\bar{h_1}$	1386(19)
$2^1 S_0$	0^{-+}	1292	π	1300(100)	η	1294(4)	1536	η	1476(4)
$2^{3}S_{1}$	$1^{}$	1486	ρ	1465(25)	ω	1400-1450	1698	φ	1680(20)
$1^{3}D_{1}$	$1^{}$	1557	ρ	1570(70)	ω	1670(30)	1845		
$1^{3}D_{2}$	2	1661					1908		
$1^{3}D_{3}$	3	1714	ρ_3	1688.8(21)	ω_3	1667(4)	1950	φ_3	1854(7)
$1^{1}D_{2}$	2^{-+}	1643	π_2	1672.4(32)	η_2	1617(5)	1909	η_2	1842(8)
$2^{3}P_{0}$	0++	1679			f_0	1724(7)	1969		
$2^{3}P_{1}$	1^{++}	1742	a_1	1647(22)		.,	2016	f_1	1971(15)
$2^{3}P_{2}$	2++	1779	a_2	1732(16)	f_2	1755(10)	2030	f_2	2010(70)
$2^{1}P_{1}$	1^{+-}	1721		. ,			2024		. ,
3^1S_0	0^{-+}	1788	π	1816(14)	η	1756(9)	2085	η	2103(50)
$3^{3}S_{1}$	$1^{}$	1921	ρ	1909(31)	ώ	1960(25)	2119	φ	2175(15)
$1^{3}F_{2}$	2++	1797			f_2	1815(12)	2143	f_2	2156(11)
$1^{3}F_{3}$	3++	1910	a ₃	1874(105)			2215	f_3	2334(25)
$1^{3}F_{4}$	4++	2018	a ₄	2001(10)	f_4	2018(11)	2286	-	
	$M_{\eta}^{th} =$	= 573 Me	V, M_{η}^{ex}	^p = 548 Me	V; M_r^t	^h = 989 Me∖	/, $M_{\eta'}^{exp} =$	= 958 N	1eV

		Theory		Experiment
$n^{2S+1}L_J$	J^P	$q\overline{s}$		
$1^{1}S_{0}$	0-	482	K	493.677(16)
$1^{3}S_{1}$	1^{-}	897	K^*	891.66(26)
$1^{3}P_{0}$	0+	1362	K_0	1425(50)
$1^{3}P_{2}$	2+	1424	K_2^*	1425.6(15)
$1P_1$	1^+	1412	$\tilde{K_1}$	1403(7)
$1P_1$	1^+	1294	K_1	1272(7)
$2^{1}S_{0}$	0-	1538		
$2^{3}S_{1}$	1^{-}	1675	K^*	
$1^{3}D_{1}$	1^{-}	1699	K^*	1717(27)
$1^{3}D_{3}$	3-	1789	K_3^*	1776(7)
$1D_2$	2^{-}	1824	$\vec{K_2}$	1816(13)
$1D_2$	2-	1709	K_2	1773(8)
$2^{3}P_{0}$	0^+	1791		
$2^{3}P_{2}$	2+	1896		
$2P_1$	1^+	1893		
2 <i>P</i> ₁	1+	1757	K_1	1650(50)

Table: Masses of strange mesons (in MeV).

Regge trajectories in (J, M^2) plane $(M^2 \text{ in } \text{GeV}^2)$

JAC.

Heavy baryon spectroscopy

	Table: Masses of ground state heavy baryons (in MeV).									
Baryon	$I(J^P)$			The	eory		Experiment			
		RQM	Roncaglia	Karliner	Jenkins	Lewis	PDG			
		(2005)	et al	et al		Woloshyn				
Λ_c	$0(\frac{1}{2}^{+})$	2297	2285				2286.46(14)			
Σ_c	$1(\frac{1}{2}^{+})$	2439	2453				2453.76(18)			
Σ_c^*	$1(\frac{3}{2}^{+})$	2518	2520				2518.0(5)			
Ξ_c	$\frac{1}{2}(\frac{1}{2}^+)$	2481	2468				2471.0(4)			
Ξ_c'	$\frac{1}{2}(\frac{1}{2}^+)$	2578	2580		2580.8(2.1)		2578.0(2.9)			
Ξ_c^*	$\frac{1}{2}(\frac{3}{2}^+)$	2654	2650				2646.1(1.2)			
Ω_c	$\bar{0}(\frac{1}{2}^{+})$	2698	2710				2697.5(2.6)			
Ω_c^*	$0(\frac{3}{2}^{+})$	2768	2770		2760.5(4.9)		2768.3(3.0) [†]			
Λ_b	$0(\frac{1}{2}^{+})$	5622	5620			$5628(^{23}_{50})$	5620.2(1.6)			
Σ_b	$1(\frac{\overline{1}}{2}^+)$	5805	5820	5814	5824.2(9.0)	5793(¹⁷ ₂₁)	5807.5(2.5) [‡]			
Σ_b^*	$1(\frac{3}{2}^{+})$	5834	5850	5836	5840.0(8.8)	$5814\binom{26}{27}$	5829.0(2.3) [‡]			
\equiv_b	$\frac{1}{2}(\frac{1}{2}^+)$	5812	5810	5795(5)	5805.7(8.1)	$5755(^{18}_{23})$	5792.9(3.0)*			
Ξ_b'	$\frac{1}{2}(\frac{1}{2}^+)$	5937	5950	5930(5)	5950.9(8.5)	$5885(^{15}_{18})$				
Ξ_b^*	$\frac{1}{2}(\frac{3}{2}^+)$	5963	5980	5959(4)	5966.1(8.3)	$5897\binom{40}{25}$				
Ω_b	$0(\frac{1}{2}^+)$	6065	6060	6052(6)	6068.7(11.1)	$6001(^{12}_{19})$	$ \left\{\begin{array}{c} 6054.4(6.8)^{**} \\ 6165(23)^{*} \end{array}\right. $			
Ω_b^*	$0(\frac{3}{2}^{+})$	6088	6090	6083(6)	6083.2(11.0)	$6013(\frac{18}{23})$	-			
	† BaBar	2006;	[‡] CDF 200	6 $(\Sigma_{b}^{+});$	* CDF 2007; *	D0 2008;	** CDF 2009			

Tetraquarks in diquark-antidiquark picture

Recently charmonium-like states with exotic properies have been observed experimentally. One of posible theoretical interpretation of these states could be provided by tetraquark model

Diquark and antidiquark in colour $\bar{3}$ and 3 configurations bound by colour forces \star typical hadronic size

- * X should be split into two states $[cu][\bar{c}\bar{u}]$ and $[cd][\bar{c}\bar{d}]$ with $\Delta M \sim \text{few MeV}$
- * existence of charged partners $X^+ = [cu][\bar{c}\bar{d}], X^- = [cd][\bar{c}\bar{u}]$
- * existence of tetraquarks with open $X_{s\bar{q}} = [cs][\bar{c}\bar{q}]$ and hidden $X_{s\bar{s}} = [cs][\bar{c}\bar{s}]$ strangeness
- * rich spectroscopy radial and orbital excitations between diquarks

 \bar{M}

M

State	Diquark	Theo	ory		Experiment	Theory
JPC	content	cqīā	cscs	state	mass	bqbq
1 <i>S</i> 1 ⁺⁺	$(S\bar{A}+\bar{S}A)/\sqrt{2}$	3871	{	(X(3872) X(3876)	$\begin{cases} 3871.4 \pm 0.6 \text{ Belle} \\ 3875.2 \pm 0.7^{+0.9}_{-1.8} \text{ Belle} \end{cases}$	10492
$1^{++}_{0^{++}}$	$(Sar{A}+ar{S}A)/\sqrt{2}\ Aar{A}$		4113 4110	Y(4140)	$4143.0 \pm 2.9 \pm 1.2 \text{ CDF}$	
2++	AĀ	3968		Y(3940)	$\left\{ egin{array}{l} 3943 \pm 11 \pm 13 \; {\tt Belle} \\ 3914.3^{+4.1}_{-3.8} \; {\tt BaBar} \end{array} ight.$	10534
1P 1	SĪ	4244		Y(4260)	$\begin{cases} 4259 \pm 8^{+2}_{-6} \text{ BaBar} \\ 4247 \pm 12^{+17}_{-32} \text{ Belle} \end{cases}$	10807
$1^{-}_{0^{-}}$	$Sar{S}$ $(Sar{A}\pmar{S}A)/\sqrt{2}$	4244 4267 }		Z ₂ (4250)	$4248^{+44+180}_{-29-35}$ Belle	10807 10820
$1^{}$ $1^{}$	$(Sar{A} - ar{S}A)/\sqrt{2} \ Aar{A}$	4284 4277		Y(4260)	$4284^{+17}_{-16}\pm4$ CLE0	10824 10827
1	AĀ	4350		Y(4360)	$\left\{ egin{array}{l} 4361\pm9\pm9 \; { t Belle} \ 4324\pm24 \; { t BaBar} \end{array} ight.$	10850
$2S \\ 1^+ \\ 0^+ \\ 1^+$	$(Sar{A}\pmar{S}A)/\sqrt{2}\ Aar{A}\ Aar{A}$	4431 4434 4461		Z(4430)	4433 \pm 4 \pm 2 Belle	10939 10942 10951
2P 1	SĪ	4666	{	Y(4660) X(4630)	$\left\{ \begin{array}{l} {\rm 4664 \pm 11 \pm 5 \; {\tt Belle}} \\ {\rm 4634}^{+8+5}_{-7-8} \; {\tt Belle} \end{array} \right.$	11122

Table: Masses of charm and bottom tetraquarks (in MeV) and possible experimental candidates.

・・

 $\label{eq:table:masses} \begin{array}{l} Table: \mbox{ Masses of light unflavoured tetraquark ground state (<math display="inline">\langle L^2 \rangle {=} 0) \mbox{ (in MeV) and possible experimental candidates. S and A denote scalar and axial vector diquarks.} \end{array}$

State	Diquark	Theory	y Experiment						
J ^{PC}	content	mass	<i>I</i> = 0	mass	l = 1	mass			
$(qq)(\bar{q}\bar{q})$									
0++	S <u>\$</u>	596	$f_0(600) [\sigma]$	400-1200		-			
$1^{+\pm}$	$(S\bar{A}\pm\bar{S}A)/\sqrt{2}$	672							
0++	AĀ	1179	$f_0(1370)$	1200-1500					
1^{+-}	AĀ	1773							
2++	$\Delta \overline{\Delta}$	1015	$\int f_2(1910)$	1903(9)					
2	77	1915	$\int f_2(1950)$	1944(12)					
$(qs)(\bar{q}\bar{s})$	_								
0++	SŜ	992	$f_0(980)$	980(10)	<i>a</i> 0(980)	984.7(12)			
1^{++}	$(S\bar{A}+\bar{S}A)/\sqrt{2}$	1201	$f_1(1285)$	1281.8(6)	$a_1(1260)$	1230(40)			
1^{+-}	$(S\bar{A}-\bar{S}A)/\sqrt{2}$	1201	$h_1(1170)$	1170(20)	$b_1(1235)$	1229.5(32)			
0++	AĀ	1480	$f_0(1500)$	1505(6)	$a_0(1450)$	1474(19)			
1^{+-}	AĀ	1942	$h_1(1965)$	1965(45)	$b_1(1960)$	1960(35)			
2^{++}	47	2007	$\int f_2(2010)$	2011(70)	∫ a ₂ (1990)	2050(45)			
2	77	2091	$\int f_2(2140)$	2141(12)) a ₂ (2080)	2100(20)			
(ss)(55)									
0++	AĀ	2203	$f_0(2200)$	2189(13)		-			
1^{+-}	AĀ	2267	$h_1(2215)$	2215(40)		-			
2++	AĀ	2357	f ₂ (2340)	2339(60)		-			

Electroweak properties of hadrons

- wave functions obatained in calculating mass spectra are used
- systematic account of relativistic effects, especially:
- \star contributions of intermediate states with negative energy
- \star transformation of wave function from rest to moving frame
- general method for calculation of matrix elements of local current operators was developed:
- \star for heavy hadrons $1/m_Q$ expansion is applied
- \star for decays of heavy hadrons with large energy transfer to light final hadrons expansion in inverse powers of recoil energy is used
- fulfillment of model independet symmetry relations following from HQET was tested and leading and subleading Isgur-Wise functions were determined

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○目 ○○○

- several new symmetry relations for decays of heavy mesons to excited heavy and light mesons were derived
- decays of heavy baryons were considered in quark-diquark approximation

Meson decay constants

$$\begin{array}{lll} \langle 0|\bar{q}_1\gamma^{\mu}\gamma_5 q_2|P(\mathbf{K})\rangle &=& if_P K^{\mu}, \\ \langle 0|\bar{q}_1\gamma^{\mu}q_2|V(\mathbf{K},\varepsilon)\rangle &=& f_V M_V \varepsilon^{\mu}, \end{array}$$

K – meson momentum, ε^{μ} – polarisation vector, M_V – vector meson mass.

$$\left< 0|J^W_{\mu}|M(\mathbf{K}) \right> = \int rac{d^4p}{(2\pi)^4} \mathrm{Tr} \left\{ \gamma_{\mu}(1-\gamma_5) \Psi(M,p)
ight\},$$

 $\Psi(M,p)$ – two-particle Bethe-Salpeter wave function

• completely relativistic treatment of light quarks

• contributions of negative-energy states are taken into account (bold lines)

$$f_{P,V} = f_{P,V}^{(1)} + f_{P,V}^{(2+3)} + f_{P,V}^{(4)},$$

contributions $f_{P,V}^{(2+3)}$ and $f_{P,V}^{(4)}$ are new

$$\Psi(M,\mathbf{p}) = \int \frac{dp^0}{2\pi} \Psi(M,p)$$

・ロト ・日下 ・モート ・モート

Constant	$f_M^{\rm NR}$	$f_{M}^{(1)}$	$f_M^{(2+3)} + f_M^{(4)}$	$(f_M^{(2+3)} + f_M^{(4)})/f_M^{(1)}$	f _M	Exp.
f_{π}	1290	515	-391	-76%	124	130.4(2)
$f_{ ho}$	490	402	-183	-46%	219	
f _K	783	353	-198	-56%	155	155.5(9)
f_{K^*}	508	410	-174	-42%	236	
f_{ϕ}	511	415	-170	-41%	245	
f_D	376	275	-41	-15%	234	208(9)
f_{D^*}	391	334	-24	-7%	310	
f_{D_s}	436	306	-38	-12%	268	269(9)
$f_{D_c^*}$	447	367	-52	-14%	315	
f_B^{a}	259	210	-21	-10%	189	227(52)
f_{B^*}	280	235	-16	-7%	219	
f _{Bs}	300	238	-20	-8%	218	
$f_{B_c^*}$	316	264	-13	-5%	251	
f_{B_c}	538	433	-8	-1.8%	425	
$f_{B_c^*}$	545	503	-4	-0.8%	499	

Table: Different contributions to the pseudoscalar and vector decay constants of light and heavy-light mesons (in MeV).

$$f_{P,V}^{\mathrm{NR}} = \sqrt{rac{12}{M_{P,V}}} \left| \Psi_{P,V}(0) \right|$$

◆□> ◆□> ◆三> ◆三> 三三 のへで

	Constant	: RQM	Godfrey	Maris	Koll	He	Ali Khan	Milc	Experiment
	f_{π}	124	180	131	219	138	126.6(6.4)	129.5(3.6)	130.70(10)(36)
	f_K	155	232	155	238	160	152.0(6.1)	156.6(3.7)	155.5(1.0)(2)
	$f_{ ho}$	219	220	207		238	239.4(7.3)		$ \begin{cases} 220(2)^* \\ 209(4)^{**} \end{cases} $
	f_{K^*}	236	267	241		241	255.5(6.5)		217(5)†
_	f_{ϕ}	245	336	259			270.8(6.5)		229(3) [‡]

Table: Pseudoscalar and vector decay constants of light mesons (in MeV).

* obtained using experimental value for $\Gamma_{\rho^0 \rightarrow e^+e^-}$.

** obtained using experimental value for $\Gamma_{\tau \to \rho \nu \tau}$.

[†] obtained using experimental value for $\Gamma_{\tau \to K^* \nu_{\tau}}$.

[‡] obtained using experimental value for $\Gamma_{\phi \rightarrow e^+e^-}$.

Table: Pseudoscalar decay constants of heavy-light mesons (in MeV).

Constant	Quark Model		Lattice		QCE) sum rule	Experiment	
	RQM	Cvetic	ETMC	Milc	Narison	Penin	Jamin	PDG
f _D	234	230(25)	197(9)	207(11)	203(20)	195(20)		207.6(9.6)
f_{D_s}	268	248(27)	244(8)	249(11)	235(24)			269.6(8.3)
f_{D_e}/f_D	1.15	1.08(1)	1.24(3)	1.20(3)	1.15(4)			
f _B	189	196(29)		195(11)	203(23)	206(20)	210(19)	227(52)
f _{Bs}	218	216(32)		243(11)	236(30)		244(21)	
f _{Bs} /f _B	1.15	1.10(1)		1.24(4)	1.16(4)		1.16	

Electromagnetic form factors of light mesons

$$\langle M(P_F)|J_{\mu}|M(P_I)\rangle = F_P(Q^2)(P_I + P_F)_{\mu}, \qquad Q^2 = -(P_F - P_I)^2$$

Conservation of electric charge \rightarrow normalisation condition: $F_P(0) = 1$

- completely relativistic calculation in the wide range of space-like momenta $Q^2 \geq 0$
- contributions of negative-energy states are taken into account

• calculated pion form factor for large Q^2 has the asymptotic behaviour $F_{\pi}(Q^2) \sim \alpha_s(Q^2)/Q^2$ predicted by quark counting rules and perturbative QCD Mean charge radius squared of pseudoscalar meson ($P = \pi, K$):

$$\langle r^2 \rangle_P = -6 \left[\frac{\mathrm{d}F_P(Q^2)}{\mathrm{d}Q^2} \right]_{Q^2=0}$$

Table: Charge radii of pseudoscalar mesons.

Charge radius	our	Godfrey	Maris	He	Lattice	Experiment
$\sqrt{\langle r^2 \rangle_{\pi}}$ (fm)	0.66	0.66	0.67	0.63	0.63 ± 0.1	$0.672 {\pm} 0.08$
$\sqrt{\langle r^2 \rangle_{K^{\pm}}}$ (fm)	0.57	0.59	0.62	0.60		$0.560{\pm}0.031$
$\langle r^2 \rangle_{K^0}$ (fm ²)	-0.072	-0.09	-0.086	-0.062		$-0.076 {\pm} 0.018$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Figure: The product of Q^2 and form factor of charged pion in comparison with experimental data.

《曰》 《聞》 《臣》 《臣》

æ

Two-photon decays of heavy quarkonia

Table: Two-photon decay widths of pseudoscalar $({}^1\!S_0)$, scalar $({}^3\!P_0)$ and tensor $({}^3\!P_2)$ states of heavy quarkonia (in keV).

		Experiment						
Meson	RQM	Munz	Gupta	Schuler	Huang	Ackleh	Crater	PDG
$\eta_c(1^1S_0)$	5.5	3.5	10.94	7.8	5.5	4.8	6.18	7.2(2.1)
$\eta_{c}'(2^{1}S_{0})$	1.8	1.38		3.5	2.1	3.7	1.95	1.3(6)
$\chi_{c0}(1^{3}P_{0})$	2.9	1.39	6.38	2.5	5.32		3.34	2.4(4)
$\chi'_{c0}(2^{3}P_{0})$	1.9	1.11						
$\chi_{c2}(1^{3}P_{2})$	0.50	0.44	0.57	0.28	0.44		0.436	0.52(5)
$\chi'_{c2}(2^{3}P_{2})$	0.52	0.48						
$\eta_b(1^1S_0)$	0.35	0.22	0.46	0.46	0.45	0.17		
$\eta_{b}'(2^{1}S_{0})$	0.15	0.11		0.20	0.21	0.13		
$\eta_{b}^{\prime\prime}(3^{1}S_{0})$	0.10	0.084						
$\chi_{b0}(1^{3}P_{0})$	0.038	0.024	0.080	0.043				
$\chi'_{b0}(2^{3}P_{0})$	0.029	0.026						
$\chi_{b2}(1^{3}P_{2})$	0.008	0.0056	0.008	0.0074				
$\chi'_{b2}(2^{3}P_{2})$	0.006	0.0068						

◆□> ◆□> ◆三> ◆三> 三三 のへで

Radiative decays

(a) Magnetic dipole (M1) transitions ($\Delta S = 1$, $\Delta L = 0$).

Decay	ω	$\Gamma^{\rm NR}$	Γ^V	Г ⁵	Г	Γ^{exp}
	MeV	keV	keV	keV	keV	keV
$J/\Psi ightarrow \eta_c \gamma$	115	2.73	1.95	3.13	1.05	1.58 ± 0.41
$\Psi' ightarrow \eta_c' \gamma$	49	0.20	0.13	0.11	0.15	< 0.62
$\Psi' ightarrow \eta_c \gamma$	639	0.23	0.61	0.35	0.95	1.05 ± 0.19
$\eta_c^\prime ightarrow J/\Psi \gamma$	500	0.33	0.88	0.47	1.41	

Table: M1 radiative decay widths in charmonium.

Table: M1 radiative decay widths in bottomonium.

Decay	ω	$\Gamma^{\rm NR}$	Γ^V	Γ ⁵	Г	BR	BR^{exp}
	MeV	eV	eV	eV	eV	(10^{-4})	(10^{-4})
$\Upsilon \rightarrow \eta_b \gamma$	60	9.7	8.7	12.2	5.8	1.1	
$\Upsilon' \to \eta'_{b} \gamma$	33	1.6	1.45	1.50	1.40	0.43	
$\Upsilon'' \to \eta_b'' \gamma$	27	0.9	0.8	0.8	0.8	0.39	
$\Upsilon' ightarrow \eta_b \gamma$	604	1.3	3.4	1.3	6.4	2.1	$4.2^{+1.1}_{-1.0}\pm0.9$
$\eta'_{h} \to \Upsilon \gamma$	516	2.4	6.3	2.5	11.8		
$\Upsilon^{\prime\prime} ightarrow \eta_b \gamma$	911	2.5	6.2	3.1	10.5	5.1	$4.8\pm0.5\pm1.2$
$\eta_{h}^{\prime\prime} \to \Upsilon \gamma$	831	5.8	14.3	7.1	24.0		
$\Upsilon^{\prime\prime} \to \eta_b^\prime \gamma$	359	0.2	0.6	0.1	1.5	0.74	< 6.2
$\eta_b^{\prime\prime} \to \Upsilon^{\tilde{\prime}} \gamma$	301	0.4	1.1	0.2	2.8		

(b) Electric dipole (E1) transitions ($\Delta L = 1$, $\Delta S = 0$).

Decay	ω	$\Gamma^{\rm NR}$	Γ^V	Г <i>^S</i>	Г	Γ^{exp} (PDG)
	MeV	keV	keV	keV	keV	keV
$2{}^3S_1 ightarrow 1{}^3P_0\gamma$	259	51.7	34.6	44.0	26.3	29.1 ± 1.8
$2{}^3\!S_1 ightarrow 1{}^3\!P_1\gamma$	171	44.9	30.1	38.3	22.9	28.4 ± 2.1
$2{}^3\!S_1 ightarrow 1{}^3\!P_2 \gamma$	128	30.9	22.9	28.1	18.2	26.8 ± 1.9
$2{}^1\!S_0 ightarrow 1{}^1\!P_1\gamma$	120	54	39	39	39	
$1{}^3\!P_0 ightarrow 1{}^3\!S_1\gamma$	305	161	151	184	121	119 ± 16
$1{}^3\!P_1 ightarrow 1{}^3\!S_1\gamma$	389	333	285	305	265	293 ± 30
$1{}^3\!P_2 ightarrow 1{}^3\!S_1 \gamma$	430	448	309	292	327	384 ± 37
$1{}^1\!P_1 ightarrow 1{}^1\!S_0 \gamma$	504	723	560	560	560	
$1{}^3\!D_1 ightarrow 1{}^3\!P_0 \gamma$	361	423	344	334	355	199 ± 32
$1{}^3\!D_1 ightarrow 1{}^3\!P_1 \gamma$	277	142	127	120	135	79 ± 20
$1{}^3\!D_1 ightarrow 1{}^3\!P_2 \gamma$	234	5.8	6.2	5.6	6.9	<24
$1{}^3\!D_2 ightarrow 1{}^3\!P_1\gamma$	291	297	215	215	215	
$1{}^3\!D_2 ightarrow 1{}^3\!P_2 \gamma$	248	62	55	51	59	
$1^3\!D_3 ightarrow 1^3\!P_2 \gamma$	250	252	163	170	156	
$1 {}^1D_2 ightarrow 1 {}^1P_1 \gamma$	275	335	245	245	245	

Table: E1 radiative decay widths in charmonium.

Decay	ω	$\Gamma^{\rm NR}$	Γ^V	Г ^{<i>S</i>}	Г	Lexb
	MeV	keV	keV	keV	keV	keV
$2^{3}S_{1} \rightarrow 1^{3}P_{0}\gamma$	162	1.65	1.64	1.66	1.62	1.22 ± 0.23
$2{}^3\!S_1 ightarrow 1{}^3\!P_1\gamma$	130	2.57	2.48	2.51	2.45	2.2 ± 0.3
$2{}^3\!S_1 ightarrow 1{}^3\!P_2 \gamma$	109	2.53	2.49	2.52	2.46	2.3 ± 0.3
$2{}^1\!S_0 ightarrow 1{}^1\!P_1\gamma$	98	3.25	3.09	3.09	3.09	
$1{}^3\!P_0 ightarrow 1{}^3\!S_1\gamma$	391	29.5	30.6	31.3	29.9	
$1{}^3\!P_1 ightarrow 1{}^3\!S_1\gamma$	422	37.1	37.0	37.4	36.6	
$1{}^3\!P_2 ightarrow 1{}^3\!S_1\gamma$	442	42.7	39.8	39.3	40.2	
$1{}^1\!P_1 ightarrow 1{}^1\!S_0 \gamma$	480	54.4	52.6	52.6	52.6	
$3{}^3\!S_1 ightarrow 2{}^3\!P_0 \gamma$	123	1.65	1.51	1.52	1.49	1.20 ± 0.25
$3{}^3\!S_1 ightarrow 2{}^3\!P_1\gamma$	100	2.65	2.43	2.45	2.41	2.56 ± 0.47
$3{}^3\!S_1 ightarrow 2{}^3\!P_2 \gamma$	86	2.89	2.69	2.71	2.67	2.7 ± 0.52
$3 {}^1S_0 ightarrow 2 {}^1P_1 \gamma$	73	3.07	2.78	2.78	2.78	
$3{}^3\!S_1 ightarrow 1{}^3\!P_0 \gamma$	484	0.124	0.040	0.054	0.027	0.061 ± 0.028
$3{}^3\!S_1 ightarrow 1{}^3\!P_1\gamma$	453	0.307	0.097	0.134	0.067	< 0.035
$3^3S_1 ightarrow 1^3P_2\gamma$	433	0.445	0.141	0.195	0.097	< 0.40
$3 {}^1S_0 ightarrow 1 {}^1P_1 \gamma$	427	0.770	0.348	0.348	0.348	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Table: E1 radiative decay widths in bottomonium.

Semileptonic heavy-to-heavy meson decays

Semileptonic *B* meson decays: $B \rightarrow D^{(*)}e\nu$ – to ground state *D* mesons $B \rightarrow D^{(**)}e\nu$ – to orbitally excited $D(1P_J)$ mesons $B \rightarrow D^{'(*)}e\nu$ – to radially excited D(2S) mesons

$$\begin{array}{lll} \displaystyle \frac{\langle D(v')|\bar{c}\gamma^{\mu}b|B(v)\rangle}{\sqrt{M_DM_B}} & = & h_+(v+v')^{\mu}+h_-(v-v')^{\mu}, \\ \displaystyle \frac{\langle D^*(v',\epsilon)|\bar{c}\gamma^{\mu}b|B(v)\rangle}{\sqrt{M_D^*M_B}} & = & ih_V\varepsilon^{\mu\alpha\beta\gamma}\epsilon^*_{\alpha}v'_{\beta}v_{\gamma}, \\ \displaystyle \frac{\langle D^*(v',\epsilon)|\bar{c}\gamma^{\mu}\gamma_5b|B(v)\rangle}{\sqrt{M_D^*M_B}} & = & h_{A_1}(w+1)\epsilon^{*\mu}-(h_{A_2}v^{\mu}+h_{A_3}v'^{\mu})(\epsilon^*\cdot v), \end{array}$$

 $w = v \cdot v'$ is scalar product of meson four-velocities • $1/m_Q$ expansion. Leading Isgur-Wise function $(m_Q \to \infty)$ for decay $B \to D^{(*)} e\nu$

$$\xi(w) = \sqrt{\frac{2}{w+1}} \lim_{m_Q \to \infty} \int \frac{d^3 p}{(2\pi)^3} \bar{\Psi}_D\left(\mathbf{p} + 2\epsilon_q(p)\sqrt{\frac{w-1}{w+1}}\mathbf{e}_{\Delta}\right) \Psi_B(\mathbf{p})$$

$$h_+(w) = h_{A_1}(w) = h_{A_3}(w) = h_V(w) = \xi(w); \quad h_-(w) = h_{A_2}(w) = 0.$$

Obtained mean value of Cabibbo-Kobayashi-Maskava matrix element $|V_{cb}|$:

$$|V_{cb}| = 0.0385 \pm 0.0015.$$

PDG value (exclusive)

$$|V_{cb}| = 0.0386 \pm 0.0013$$

Figure: Comparison of experimental data and predictions of our model for product $F_D(w)|V_{cb}|$. Green dots represent CLEO data and red diamonds show Belle data. Solid lines are predictions of our model for $|V_{cb}| = 0.044$, 0.039, 0.034 (blue, green, red).

Figure: Comparison of experimental data and predictions of our model for product $F_{D^*}(w)|V_{cb}|$. Dots show CLEO data for $B^+ \rightarrow D^{*0}l^-\nu$, triangles – CLEO data for $B^0 \rightarrow D^{*+}l^-\nu$, diamonds – Belle data, squares – BaBar data. Solid lines show predictions of our model for $|V_{cb}| = 0.044, 0.039, 0.034$ (blue, green, red).

Semileptonic heavy-to-light meson decays

 $B \to \pi(\rho)e\nu$ Determination of Cabibbo-Kobayashi-Maskawa matrix element $|V_{ub}|$: • from partial and total semileptonic decay widths

$$\begin{array}{ll} B \to \pi e \nu & |V_{ub}| = (4.02 \pm 0.10) \times 10^{-3}, \\ B \to \rho e \nu & |V_{ub}| = (3.33 \pm 0.20) \times 10^{-3}, \end{array}$$

• from comparison of branching ratios

$$\begin{array}{ll} B \to \pi e \nu & |V_{ub}| = (4.05 \pm 0.20) \times 10^{-3}, \\ B \to \rho e \nu & |V_{ub}| = (3.38 \pm 0.30) \times 10^{-3}, \end{array}$$

• $|V_{ub}|$ from $B \to \rho e \nu$ is ~ 16% smaller than $|V_{ub}|$ from $B \to \pi e \nu$ • from recent CLEO data for branching ratio

$$BR(B^0 o
ho^+ e^-
u)^{
m exp} = (2.91 \pm 0.54) imes 10^{-4} \qquad |V_{ub}| = (3.81 \pm 0.35) imes 10^{-3}$$

close to value of $|V_{ub}|$ from $B\to\pi e\nu$ \bullet obtained mean value

$$|V_{ub}| = (3.82 \pm 0.20) \times 10^{-3}$$

PDG value (exclusive)

$$|V_{ub}| = (3.5^{+0.6}_{-0.5}) \times 10^{-3}$$

Rare radiative B meson decays

• described by one-loop diagrams (penguins)

 $B \to K_{(J)}^{(*)} \gamma$

Table: Theoretical predictions and experimental data for branching ratios of rare radiative decays of B mesons ($\times 10^{-5}$)

	RQM	Altomari	Veseli	Safir	Lee	Cheng	Exp.
$BR(B \rightarrow K^*(892)\gamma)$	4.4(5)	1.35	4.71(1.79)	3.4(1.4)		3.27(74)	4.01(20) ^a
							4.03(26) ^b
							4.2(6) ^c
$B \rightarrow K_0^*(1430)\gamma$			1	forbidden			
$\overline{BR(B \rightarrow K_1(1270)\gamma)}$	0.59(11)	1.1	1.20(44)	0.69(28)	0.828	0.77(11)	< 5.8 ^a
							$4.3(1.3)^{b}$
$\overline{BR(B \rightarrow K_1(1400)\gamma)}$	0.86(15)	0.7	0.58(26)	0.31(14)	0.393	0.08(4)	$< 1.5^{a,b}$
$\overline{BR(B \rightarrow K_2^*(1430)\gamma)}$	1.7(4)	1.8	1.73(80)	1.7(7)		1.48(30)	$1.24(24)^{a}$
							$1.4(4)^{b}$
							$1.7(6)^{c}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Experimental data for decays of: ^a B^0 ; ^b B^+ ; ^c mixture of B^{\pm}/B^0 mesons.

Semileptonic decays of heavy baryons

Form factors of heavy baryons with scalar diquark

Hadronic matrix elements $\Lambda_Q \rightarrow \Lambda_{Q'} e \nu$ ($w = v \cdot v'$):

$$\langle \Lambda_{Q'}(v',s') | V^{\mu} | \Lambda_{Q}(v,s) \rangle = \bar{u}_{\Lambda_{Q'}}(v',s') \Big[F_{1}(w) \gamma^{\mu} + F_{2}(w) v^{\mu} + F_{3}(w) v'^{\mu} \Big] u_{\Lambda_{Q}}(v,s), \langle \Lambda_{Q'}(v',s') | A^{\mu} | \Lambda_{Q}(v,s) \rangle = \bar{u}_{\Lambda_{Q'}}(v',s') \Big[G_{1}(w) \gamma^{\mu} + G_{2}(w) v^{\mu} + G_{3}(w) v'^{\mu} \Big] \gamma_{5} u_{\Lambda_{Q}}(v,s)$$

• In the limit $m_Q \rightarrow \infty$ (leading order) according to HQET

$$F_1(w) = G_1(w) = \zeta(w),$$
 $F_2(w) = F_3(w) = G_2(w) = G_3(w) = 0.$

《曰》 《圖》 《臣》 《臣》

æ

• In the first (subleading) order of $1/m_Q$ expansion in HQET

$$F_{1}(w) = \zeta(w) + \left(\frac{\bar{\Lambda}}{2m_{Q}} + \frac{\bar{\Lambda}}{2m_{Q'}}\right) [2\chi(w) + \zeta(w)],$$

$$G_{1}(w) = \zeta(w) + \left(\frac{\bar{\Lambda}}{2m_{Q}} + \frac{\bar{\Lambda}}{2m_{Q'}}\right) \left[2\chi(w) + \frac{w-1}{w+1}\zeta(w)\right],$$

$$F_{2}(w) = G_{2}(w) = -\frac{\bar{\Lambda}}{2m_{Q'}}\frac{2}{w+1}\zeta(w), \qquad F_{3}(w) = -G_{3}(w) = -\frac{\bar{\Lambda}}{2m_{Q}}\frac{2}{w+1}\zeta(w).$$

In the first order of $1/m_Q$ expansion in our model

$$F_{1}(w) = \zeta(w) + \left(\frac{\bar{\Lambda}}{2m_{Q}} + \frac{\bar{\Lambda}}{2m_{Q'}}\right) [2\chi(w) + \zeta(w)] \\ + 4(1 - \varepsilon)(1 + \kappa) \left[\frac{\bar{\Lambda}}{2m_{Q'}} \frac{1}{w - 1} - \frac{\bar{\Lambda}}{2m_{Q}}(w + 1)\right] \chi(w),$$

$$G_{1}(w) = \zeta(w) + \left(\frac{\bar{\Lambda}}{2m_{Q}} + \frac{\bar{\Lambda}}{2m_{Q'}}\right) \left[2\chi(w) + \frac{w - 1}{w + 1}\zeta(w)\right] - 4(1 - \varepsilon)(1 + \kappa)\frac{\bar{\Lambda}}{2m_{Q}}w\chi(w),$$

$$F_{2}(w) = -\frac{\bar{\Lambda}}{2m_{Q'}}\frac{2}{w + 1}\zeta(w) - 4(1 - \varepsilon)(1 + \kappa)\left[\frac{\bar{\Lambda}}{2m_{Q'}}\frac{1}{w - 1} + \frac{\bar{\Lambda}}{2m_{Q}}w\right]\chi(w),$$

$$G_{2}(w) = -\frac{\bar{\Lambda}}{2m_{Q'}}\frac{2}{w + 1}\zeta(w) - 4(1 - \varepsilon)(1 + \kappa)\frac{\bar{\Lambda}}{2m_{Q'}}\frac{1}{w - 1}\chi(w),$$

$$F_{3}(w) = -G_{3}(w) = -\frac{\bar{\Lambda}}{2m_{Q}}\frac{2}{w + 1}\zeta(w) + 4(1 - \varepsilon)(1 + \kappa)\frac{\bar{\Lambda}}{2m_{Q}}\chi(w).$$

$$\Longrightarrow (1 - \varepsilon)(1 + \kappa) = 0$$

Prediction for branching ratio ($|V_{cb}| = 0.041$, $\tau_{\Lambda_b} = 1.23 \times 10^{-12}$ s)

 $Br^{\mathrm{theor}}(\Lambda_b \rightarrow \Lambda_c e \nu) = 6.9\%$

Experiment

$$Br^{\exp}(\Lambda_b \to \Lambda_c e\nu) = \begin{cases} \left(5.0^{\pm 1.1 \pm 1.6}_{-0.8 \pm 1.2}\right)\% & \text{DELPHI} \\ \left(8.1 \pm 1.2^{\pm 1.1}_{-1.6} \pm 4.3\right)\% & \text{CDF} \end{cases}$$

$$Br^{exp}(\Lambda_b \to \Lambda_c e\nu + anything) = (9.9 \pm 2.6)\%.$$
 PDG

Table: Comparison of theoretical predictions for semileptonic decay widths Γ (in $10^{10}{\rm s}^{-1})$ of bottom baryons.

Decay		Singleton	Cheng	Körner	lvanov	lvanov	Cardarelli	Albertus	Huang
	RQM	NRQM	NRQM	NRQM	RTQM	BS	LF	NRQM	sum rule
$\Lambda_b \rightarrow \Lambda_c e \nu$	5.64	5.9	5.1	5.14	5.39	6.09	5.08 ± 1.3	5.82	5.4 ± 0.4
$\Xi_b \rightarrow \Xi_c e \nu$	5.29	7.2	5.3	5.21	5.27	6.42	5.68 ± 1.5	4.98	
$\Sigma_b ightarrow \Sigma_c e u$	1.44	4.3			2.23	1.65			
$\Xi'_{b} \rightarrow \Xi'_{c} e \nu$	1.34								
$\Omega_b^{\circ} ightarrow \Omega_c e u$	1.29	5.4	2.3	1.52	1.87	1.81			
$\Sigma_b \rightarrow \Sigma_c^* e \nu$	3.23				4.56	3.75			
$\Xi'_{b} \rightarrow \Xi^{*}_{c} e \nu$	3.09								
$\Omega_b^{*} ightarrow \Omega_c^{*} e u$	3.03			3.41	4.01	4.13			

Conclusions

- Constituent quark model provides reliable pattern for describing hadron properties
- Quasipotential method embodying QCD motivated quark interaction is the effective means of constructing relativistic quark model
- Long-range quark interaction in hadrons is the mixture of scalar and vector confining potentials
- Chromomagnetic quark interaction vanishes at large distances in accord with flux tube model
- One must consistently take into account relativistic effects including contributions of intermediate negative-energy states and relativistic transformations of hadron wave functions
- For describing heavy hadrons it is permissible to apply the expansion in relative velocities (v/c) and in inverse masses $(1/m_Q)$ of heavy quarks
- Heavy quark symmetry imposes strong constraints on the model parameters and essentially simplifies calculations
- Light quarks should be treated completely relativistically
- Diquark concept affords good approximation for describing properties of heavy baryons and tetraquarks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

"My conclusion is that if you want to know the mass of a particle and if you have little time (in years!) and little money you should forget all your prejudices and use potential models. This is, in fact, even true to a large extent for systems containing light quarks, which is still more mysterious."

André Martin (CERN)

(日) (四) (문) (문) (문) (문)

CERN-TH/96-318