Prof. Dr. P. Uwer, Dr. P. Kant AG Phänomenologie der Elementarteilchenphysik Institut für Physik

Übungen zur Theoretischen Einführung in das Standardmodell (P23.1.1)

WS 09/10 Blatt 1 Abgabe: 23. 10. 2009

Aufgabe 1: Lorentz-Gruppe

- a) Zeigen Sie, dass die Lorentz-Transformationen eine Gruppe bilden.
- b) Ein Boost mit Geschwindigkeit v entlang der x^3 -Achse wird beschrieben durch

$$x^{\mu} \to x'^{\mu},$$

$$x'^{0} = \gamma(v) \left(x^{0} - vx^{3} \right),$$

$$x'^{1} = x^{1},$$

$$x'^{2} = x^{2},$$

$$x'^{3} = \gamma(v) \left(x^{3} - vx^{0} \right),$$

$$\gamma = \frac{1}{\sqrt{1 - v^{2}}}.$$
(1)

Der Zusammenhang zwischen x^{μ} und x'^{μ} lässt sich auch als Matrixmultiplikation

$$x'^{\mu} = L^{\mu}_{\ \nu} x^{\nu} \text{ oder } x' = Lx \tag{2}$$

schreiben. Bestimmen Sie die Matrix L.

- c) Betrachten Sie nun einen Boost in beliebige Richtung \vec{v} .
 - Wie transformiert sich x^{μ} ? *Hinweis:* Zerlegen Sie die räumlichen Anteile \vec{x} und $\vec{x'}$ durch Projektion auf \vec{v} in einen parallelen und einen Senkrechten Anteil zu \vec{v} und verallgemeinern Sie (1).
 - Zeigen Sie, dass die Matrix $L_{\vec{v}}$ dieser Transformation wie folgt geschrieben werden kann:

$$L_{\vec{v}} = \begin{pmatrix} \gamma & -\gamma \vec{v}^T \\ -\gamma \vec{v} & \mathbf{1}_3 + \frac{\gamma}{1+\gamma} \vec{v} \vec{v}^T \end{pmatrix}. \tag{3}$$

- Wie sehen die Matrizen aus, die eine reine Drehung im Raum erzeugen? Geben Sie explizit die Matrix L_{ϕ_1} für eine Drehung um den Winkel ϕ um die x^1 -Achse an.
- d) Die unter c) diskutierte Matrix $L_{\vec{v}}$ ist eine differentierbare Funktion in v_i . Eine inifinitesimale Transformation hat die Gestalt

$$L = \mathbf{1} + \delta v_i K_i \,, \tag{4}$$

mit

$$K_i = \frac{\partial L}{\partial v_i}\Big|_{\vec{v}=0} \,. \tag{5}$$

- Bestimmen Sie die K_i .
- Wie sieht der Kommutator

$$[K_1, K_2] = K_1 K_2 - K_2 K_1 \tag{6}$$

aus? Was bedeutet das für das wiederholte boosten eines Vektors in verschiedene Richtungen?

(4 Punkte)

Aufgabe 2: Kinematik an Elektron-Proton Collidern

Im Speicherring HERA wurden Elektronen von 30 GeV und Protonen von 820 GeV zur Kollision gebracht.

a) Wie groß ist die Energie im Schwerpunktsystem? Diese Größe wird mit \sqrt{s} bezeichnet und es gilt

$$s = (p_e + p_p)^2, (7)$$

wobei p_e und p_p den Viererimpuls des Elektrons bzw. Protons bezeichnen.

b) Welche Elektronenenergie bräuchte man, um die gleiche Schwerpunktsenergie bei einer Kollision an einem ruhenden Proton zu erzeugen? *Hinweis:* Nutzen sie die Lorentz-Invarianz von \sqrt{s} und gehen Sie in ein geeignetes Bezugssystem.

(4 Punkte)

Aufgabe 3: Compton-Streuung

Wir betrachten die Streuung eines Photons an einem Elektron der Masse m_e . Im Laborsystem sei das Elektron in Ruhe, das Photon habe Energie E_{γ} .

- a) Wie sehen die Viererimpulse von Elektron und Photon vor der Streuung im Laborsystem aus? Wie im Schwerpunktsystem?
- b) Leiten Sie unter Benutzung der Erhaltung des gesamten Viererimpulses den Energieübertrag in Abhängigkeit des Streuwinkels her. Was ist der maximale Energieübertrag?

(4 Punkte)