
HU-EP-17/08

FR-PHENO-2017-14

TCDMATH 18–02

Kira – A Feynman Integral Reduction Program

P. Maierhöfer a, J. Usovitschbc and P. Uwer b

a Physikalisches Institut, Albert-Ludwigs-Universität Freiburg,

79104 Freiburg, Germany

bHumboldt-Universität zu Berlin, Institut für Physik,

Newtonstraße 1:5, 12489 Berlin, Germany

cHamilton Mathematics Institute, Trinity College Dublin,

College Green, Dublin 2, Ireland

In this article, we present a new implementation of the Laporta algorithm to

reduce scalar multi-loop integrals—appearing in quantum field theoretic calcula-

tions—to a set of master integrals. We extend existing approaches by using

an additional algorithm based on modular arithmetic to remove linearly depen-

dent equations from the system of equations arising from integration-by-parts and

Lorentz identities. Furthermore, the algebraic manipulations required in the back

substitution are optimized. We describe in detail the implementation as well as

the usage of the program. In addition, we show benchmarks for concrete exam-

ples and compare the performance to Reduze 2 and FIRE 5. In our benchmarks

we find that Kira is highly competitive with these existing tools.

1



PROGRAM SUMMARY

Manuscript Title: Kira – A Feynman Integral Reduction Program

Authors: P. Maierhöfer, J. Usovitsch and P. Uwer

Program title: Kira

Licensing provisions: GPLv3 or later

Programming language: C++

Computer(s) for which the program has been designed: desktop PC, compute nodes/workstations

Operating system(s) for which the program has been designed: Linux 64bit

RAM required to execute with typical data: depends on the complexity of the problem, from few MB

up to a few hundred GB, or even more in complicated cases.

Has the code been vectorized or parallelized?: yes

Number of processors used: any number of cores

Supplementary material: this article, examples

Keywords: Feynman diagrams, multi-loop Feynman integrals, dimensional regularization, Laporta al-

gorithm, modular arithmetic, computer algebra

CPC Library Classification: 4.4 Feynman diagrams, 4.8 Linear Equations and Matrices, 5 Computer

Algebra

External routines/libraries used: Fermat [1], gateToFermat [2], GiNaC [3,4], yaml-cpp [5], zlib

[6] and SQLite3 [7]

Nature of problem: The reduction of Feynman integrals to master integrals leads in general to a system

of equations which contains redundant, i.e. linearly dependent, equations. In particular, for multi-scale

problems, the algebraic manipulation of these redundant equations can lead to a substantial increase in

runtime and memory consumption without affecting the results.

Solution method: The program identifies linearly dependent relations based on modular arithmetic with

the help of an algorithm presented in Ref. [8]. Afterwards the program brings a linearly independent

system of equations in a triangular form. Furthermore, the algebraic manipulations required in the back

substitution are optimized.

Restrictions: the CPU time and the available RAM

Running time: minutes to weeks, depending on the complexity of the problem

References:

[1] R. H. Lewis, Computer Algebra System Fermat, https://home.bway.net/lewis/.

[2] M. Tentioukov, gateToFermat, http://science.sander.su/FLink.htm.

[3] C. W. Bauer, A. Frink, and R. Kreckel, Introduction to the GiNaC framework for symbolic computa-

tion within the C++ programming language, J. Symb. Comput. 33 (2000) 1, arXiv:cs/0004015 [cs-sc].

[4] J. Vollinga, GiNaC: Symbolic computation with C++, Nucl. Instrum. Meth. A559 (2006) 282-284,

arXiv:hep-ph/0510057 [hep-ph].

[5] YAML, YAML Ain’t Markup Language, http://yaml.org.

[6] J.-L. Gailly and M. Adler, ZLIB, http://zlib.net.

[7] SQLite, SQLite3, version: 3.14.2, https://www.sqlite.org.

[8] P. Kant, Finding Linear Dependencies in Integration-By-Parts Equations: A Monte Carlo Approach,

Comput. Phys. Commun. 185 (2014) 1473-1476, arXiv:1309.7287 [hep-ph].

2

https://home.bway.net/lewis/
http://science.sander.su/FLink.htm
http://arxiv.org/abs/cs/0004015
http://arxiv.org/abs/hep-ph/0510057
http://yaml.org
http://zlib.net
https://www.sqlite.org
http://arxiv.org/abs/1309.7287


1 Introduction

The steadily increasing experimental precision reached in current collider experiments like

ATLAS and CMS requires on the theory side the evaluation of higher order corrections in the

perturbative expansion. While the computation of next-to-leading order (NLO) corrections is

well established today, the same level of maturity has not yet been reached for next-to-next-to-

leading order (NNLO) calculations, although tremendous progress has been made in the last

few years, see for example [1–17] for an incomplete list of recent calculations.

One major bottleneck in the evaluation of multi-loop amplitudes is the computation of the

occurring Feynman integrals. The application of Feynman rules leads in general to tensor

integrals. All Feynman integrals may be calculated directly. This approach is worked out

in [18–20]. However, in most applications it is advantageous to reduce the tensor integrals

to scalar integrals. Because of integration-by-parts [21, 22] and Lorentz [23] identities these

integrals are not independent and can be expressed in terms of a small set of so-called master

integrals. The integration-by-parts and Lorentz identities relate integrals with different powers

of the propagators. Combining these relations algebraically, ‘ladder-operators’ to reduce the

powers of the propagators in form of a recursion can be constructed. In practice, this procedure

is however highly non-trivial and cumbersome.

Alternatively, the integration-by-parts and Lorentz relations can be evaluated for integer (in-

stead of algebraic) powers of the propagators. Using different integer values for the different

powers as seeds, a system of equations can be set up. Solving this system leads to a reduc-

tion to master integrals. This is the essence of the Laporta algorithm [24]. Since the integral

reduction is a crucial step in the analytic evaluation of multi-loop amplitudes, various pub-

licly available implementations of the Laporta algorithm exist: AIR [25], FIRE [26–28] and

Reduze [29, 30]. Applying these programs to state-of-the-art calculations depending on sev-

eral mass scales (internal/external particle masses and scalar products of external momenta)

the required runtime and the memory consumption may put severe limits in practical applica-

tions.

In this article we present an optimized implementation of the Laporta algorithm with the aim

to extend the frontier of achievable reductions to more mass scales. Generating the system

of equations using different input seeds leads in general to a system of equations which con-

tains redundant, i.e. linearly dependent, equations. In particular, for multi-scale problems, the

algebraic manipulation of these redundant equations can lead to a substantial increase in run-

time and memory consumption without affecting the results. In Ref. [31] a method has been

presented to eliminate the linearly dependent equations using only fixed-size integer arith-

metic instead of computationally intense algebraic manipulations. The main idea is to replace

the different mass scales occurring in the problem by integer numbers over a finite field and

perform a Gauss type elimination afterwards to identify dependent equations. Besides the

elimination of redundant equations, this procedure allows us to identify the master integrals

before or even without performing the actual reduction, a task for which otherwise dedicated

algorithms or computer programs are required, e.g. [32, 33]. Furthermore, the handling of the

3



algebraic integral coefficients occurring in the reduction tables is improved. We find that these

modifications lead to a substantial improvement in performance, in particular, when multi-

scale problems are studied. In addition, since Kira uses input very similar to the one required

by Reduze 2, our implementation can also be used to perform independent cross checks of

results generated with Reduze 2.

The outline of this article is as follows. To introduce the notation we briefly review in sec-

tion 2 some basic aspects of multi-loop Feynman integrals. In section 3 we describe our

implementation of the Laporta algorithm. Section 4 gives detailed information on the required

prerequisites and how to install Kira. In section 5 we illustrate the usage with a simple exam-

ple. In addition, information on various options to tune the reduction is provided. Section 6

presents some benchmarks. More precisely, three double box topologies with non-vanishing

internal and external masses are reduced and the required runtime is reported. As reference

we also present the runtime required using the program Reduze 2 [29, 30]. We finally close

with a conclusion in section 7.

2 Preliminaries

To fix the notation used in this work we start with a brief review of multi-loop integrals as

encountered in perturbative calculations in quantum field theory. Applying within a concrete

model the Feynman rules to calculate scattering matrix elements leads to multi-loop tensor

integrals of the form

∫ L
∏

i=1

ddℓi
ℓ
µ1

1
· · ·ℓ

µ j

1
. . . ℓ

ν1
L
· · ·ℓ

νm
L

P1(ℓ1, . . . , ℓL, p1, . . . pE) · · ·Pt′(ℓ1, . . . , ℓL, p1, . . . pE)
. (1)

The E momenta pi denote the linearly independent external momenta. (We consider a scatter-

ing amplitude with E+1 external momenta/legs, however, because of momentum conservation

only E momenta are independent.) The L momenta ℓi are the loop momenta which are not

fixed through momentum conservation at each vertex. With t′ we denote the number of prop-

agators of which t are independent. The inverse propagators Pi are of the form

Pi = k2
i −m2

i + iε, (2)

with ki being a linear combination of the momenta ℓ1, . . . , ℓL and p1, . . . , pE and mi denoting the

masses of the corresponding virtual particles. Within dimensional regularization d = 4−2ǫ de-

notes the dimension of space-time. As usual d , 4 is used to regularize infra-red and ultraviolet

divergences. Using projectors or a Feynman/Schwinger type parametrization the multi-loop

tensor integrals can be reduced to scalar multi-loop integrals. The Feynman/Schwinger type

parametrization will introduce scalar integrals with shifted dimensions and indices. The pro-

jectors will generate scalar integrals with auxiliary propagators which represent irreducible

scalar propagators. The required number of auxiliary propagators is easily calculated. The

4



number of scalar products involving the loop-momenta is given by

N = EL+
L(L+1)

2
. (3)

However, t scalar products can be expressed in terms of linear combinations of the propagators.

The number of auxiliary propagators is thus given by (N− t). The occurring integrals can thus

be cast in the form

T (d,a1, . . . ,at,at+1, . . . ,aN , {p j}) =

∫ L
∏

i=1

ddℓi
1

P
a1

1
. . .P

at
t P

at+1

t+1
. . .P

aN

N

, (4)

where the powers ai of the auxiliary propagators (i.e. i = t+1 . . .N) may only take non-positive

values. Note that the auxiliary propagators Pt+1 . . .PN are not uniquely fixed. They are con-

strained only by the requirement that together with the first t propagators all scalar products

involving the loop momenta are expressible as linear combinations of the N propagators. As

a short hand notation we collect the indices ai into an N dimensional vector a = (a1, . . . ,aN).

Integration-by-parts and Lorentz-invariance identities: Performing the reduction of

the tensor integrals to scalar integrals outlined above leads in general to a large number of

scalar integrals. However, these integrals are not independent. So called Integration-By-Parts

(IBP) identities [21, 22] and Lorentz-Invariance (LI) [23] lead to linear relations between

them. As a consequence the large number of scalar integrals can be reduced to a smaller set

of master integrals, which serve as a basis to express all other scalar integrals. To be more

specific the IBP equations follow from

∫ L
∏

j=1

ddℓ j
∂

∂ℓ
µ

f















q
µ

l

P
a1

1
. . .P

aN

N















= 0, f = 1, . . . ,L, l = 1, . . . ,L+E, (5)

with ql = ℓl for l = 1 . . .L and ql = pl−L for l = L+1 . . .L+E. For a fixed vector a the possible

choices for f and l lead to L(E + L) IBP equations relating integrals with indices shifted by

one unit to each other.

The LI equations follow from

E
∑

i=1

(

pνi
∂

∂piµ
− p
µ

i

∂

∂piν

)

T (a, {pi}) = 0. (6)

Contracting this equation with all possible antisymmetric combinations of the form

prµpsν− psµprν, (7)

leads to E(E−1)/2 equations between integrals with shifted indices. To reduce the large num-

ber of scalar integrals to the master integrals there are essentially two different strategies. One

5



method is to combine the LI and IBP relations to construct ‘ladder-operators’ for the individ-

ual propagators. A recursive application of these ladder-operators can then be used to reduce

all integrals to the master integrals. However, in practice this approach suffers from the fact

that the construction of the ladder-operators is non-trivial and often involves some handwork.

For recent progress in this direction we refer to Refs. [27, 34, 35]. In the second approach the

IBP- and LI-equations are applied to integer a ∈ ZN instead of algebraic a. Making different

choices for a which are often called seeds a huge system of equations can be built up. Us-

ing different seeds leads in general to relations between different (unknown) scalar integrals.

However, it turns out that the number of relations grows faster than the number of unknown

integrals. Making the system big enough all required scalar integrals can be reduced to the

master integrals by applying a Gauss type elimination algorithm. This is the essence of the

Laporta approach first described in Ref. [24]. Alternative ways of using IBP identities for

integral reduction have been explored e.g. in [36, 37]

Sectors and sub-sectors: In practical applications it turns out that the system of equations

typically shows some block structure. Since respecting this structure in the reduction may be

beneficial it is useful to introduce the notion of sectors and sub-sectors. For a given scalar

integral the related sector is defined as the set of integrals for which the subset of propagators

occurring with positive powers is the same. For each a we define a vector θ = (θ1, . . . , θN)

where the θi are set to one if ai > 0 and zero otherwise,

θi = Θ
(

ai−
1
2

)

, (8)

where Θ(x) is the Heaviside step function. All scalar integrals within one sector lead to the

same θ. The scalar integral for which aC = θ(aC) is called the corner integral of the sector. To

uniquely label a sector we may identify the θi as the components of a binary representation of

a sector id S ,

S =

N
∑

j=1

θ j ·2
j−1. (9)

The total number of possible sectors is given by 2N . The number of different propagators

appearing in the denominator of any integral of a sector is given by

t =

N
∑

i=1

θi. (10)

Furthermore, we define the vector of positive propagator powers, r = (r1, . . . ,rt), which is

obtained from a by removing all non-positive indices (preserving the order), and analogously

the vector of negative propagator powers, s = (s1, . . . , sN−t). Within a sector the sum of all

positive powers of the propagators and the negative sum of all non-positive powers constitute

a measure for the complexity of an integral. It is thus convenient to define

r =

t
∑

i=1

ri and s = −

N−t
∑

i=1

si. (11)

6



Identification of trivial sectors: Within dimensional regularization, scaleless integrals are

consistently set to zero. In Ref. [38] it is shown that if the corner integral of a given sector

is zero, all other integrals in this sector are zero, too. Accordingly, such a sector is called a

trivial sector or a zero sector. To identify zero sectors, we employ the algorithm presented

in Ref. [34]. The algorithm is based on the Feynman parameter representation of Feynman

integrals,

T (d, a) =
Γ(a−Ld

2
)

∏

iΓ(ai)

∫ N
∏

j=1

dz jz
a j−1

j
δ(1− z)

F
d
2 L−a

U
d
2 (L+1)−a

, (12)

with z =
∑N

j=1
z j, a =

∑N
j=1

a j and the Symanzik polynomialsU and F , which are multivariate

polynomials in the z j. To identify zero sectors, the function

G(z) = F (z)+U(z) (13)

is considered. If the equation
∑

i

kizi
∂G(z)

∂zi
=G(z) (14)

has a z-independent solution for ki the corresponding sector is trivial. Identifying zero sectors

in an early stage of the reduction procedure can greatly simplify the reduction.

Symmetry relations between integrals: Another class of relations between Feynman in-

tegrals which are usually not covered by IBP and LI identities is given by symmetry relations.

A simple example which exhibits such a symmetry is the one-loop bubble integral

T (d,a1,a2) =

∫

ddℓ
1

(ℓ2−m2+ iε)a1((ℓ+ p)2−m2+ iε)a2
, (15)

which obeys the symmetry relation

T (d,a1,a2) = T (d,a2,a1), (16)

corresponding to the shift

ℓ→−ℓ− p (17)

of the loop momentum ℓ. In general, symmetries can be derived from loop momentum shifts

ℓ′i =

L
∑

j=1

Mi jℓ j+

E
∑

j=1

c
(i)

j
p j (i = 1 . . .L), Mi j,c

(i)

j
∈ {−1,0,1}, (18)

and may also involve permutations of external momenta which leave the Mandelstam variables

invariant. Such a transformation conveys a symmetry if applying it to an integral with only

non-negative powers T (d, r) results in an integral T ′(d, r′) where r′ is a permutation of r.

Applying it to an integral which contains negative powers results in a linear combination of

integrals. By employing such symmetry relations the number of independent integrals can

7



be reduced, resulting in a smaller set of master integrals. Symmetries which relate integrals

within the same sector to each other are commonly referred to as sector symmetries. Those

which relate different sectors of the same or of different topologies to each other are referred

to as sector mappings. Furthermore, in certain cases symmetries exist which apply only to

integrals without negative propagator powers, because the relation can not be represented in

terms of loop momentum shifts and external momentum permutations.

The sector mappings and sector symmetries are identified by applying the equation (13) to

each corner integral. If the function in equation (13) is equal for two different corner integrals

after a permutation of Feynman parameters and kinematic invariants then the two considered

corner integrals exhibit a symmetry relation described above.

Kira can handle several topologies in a single run. By exploiting mappings between equiva-

lent sectors of different topologies, a common set of linearly independent master integrals for

the entire set of topologies will be found.

3 Laporta Algorithm – Implementation

In the Laporta algorithm the IBP, LI and symmetry relations are applied to a chosen set of

integrals T (d, a) as defined in Eq. (4) to generate a linear homogeneous system of equations

G with the integrals as unknowns [24]. In the implementation presented in this article we use

the C++ library GiNaC [39, 40] to perform the necessary algebraic manipulations. The set of

integrals is constrained by

r ∈ [rmin,rmax], s ∈ [smin, smax], (19)

where r and s are defined in Eq. (11). rmax, rmin, smax and smin are user-defined values which

control the set of seed integrals for which equations are generated. The integrals T (d, a) out-

side the interval limits which may be generated by applying IBP- and LI-relations to the seeds

are called auxiliary integrals. The rank of the system of equations G is always smaller than the

number of different unknowns T (d, a) in the system. The goal of the Laporta reduction is to

find a representation of all the seed integrals in terms of a small set of independent integrals,

the so called master integrals. In practical applications only the master integrals are needed to

be calculated by means of analytic or numeric algorithms since all other integrals appearing in

the calculation can be expressed as linear combinations of them. In the following we present

some implementation details of the reduction algorithm within Kira.

3.1 Ordering of integrals and equations

Ordering of the Integrals: To define an order on the integrals, in Kira each integral T (d, a)

is represented as a list of integer numbers {T,S ,r, s, s, r}, where T represents the topology, S

is the sector id, r the sum of positive indices in a (Eq. (11)), s the negative sum of negative

8



indices (Eq. (11)), s the vector of non-positive indices and r the vector of positive indices.

Note that s may contain zeros. The integrals are then ordered lexicographically with respect to

{T,S ,r, s, s, r}. Integrals which compare larger in this sense are regarded as more complicated.

Ordering of the Equations: The ordering of the integrals is used to define a (pre)order of

the equations. Kira represents each equation as a list of integrals I, including the coefficients

of the integrals,

0 =
∑

i

ciT (d, ai) ⇒ I = {c1T1(d, a1), c2T2(d, a2), . . .}. (20)

The integrals within each list are ordered in descending order, i.e. Ti(d, ai) > T j(d, a j) for

i < j. The first integral in each equation is thus the most complicated one which appears in

it and it serves as a natural first criterion for the complexity of the equation. While this is

in principle sufficient to make the reduction algorithm work, it is convenient to add further

criteria to impose an order of equations with the same most complicated integral. As the

second criterion we choose the length of the equation, followed by the remaining integrals.

I.e. the equations are ordered lexicographically with respect to:

{T1(d, a1), length(I), T2(d, a2), T3(d, a3), . . .}. (21)

The system of equations G is thus represented as an ordered list of equations

E = {I1, . . .In}, (22)

where Ii denotes the i-th equation and Ii ≤ I j if i < j.

Note that this defines a total preorder on the equations rather than a total order, because it does

not take into account the coefficients. Hence, equations which contain the same set of integrals

are regarded as equally complex, even if they are not just multiples of each other.

3.2 Reduction procedure

3.2.1 Selection of linearly independent equations

In large systems of IBP equations it has been observed that a quite large fraction of the equa-

tions are linearly dependent, i.e. these equations can be removed from the system without af-

fecting the solution. Given that the algebraic manipulations of the integral coefficients involve

multivariate rational functions in the kinematic invariants and the dimension d it is highly de-

sirable to avoid any superfluous calculations involving linearly dependent equations. This is

important both to prevent expression swell at intermediate steps and to avoid unnecessary time

consuming algebraic simplifications of the integral coefficients when different equations are

combined.

9



An algorithm to identify linearly dependent relations based on modular arithmetic has been

presented in Ref. [31] together with an implementation in the computer program ICE. To our

knowledge, the application of modular techniques, which are well-known in mathematics [41],

to solve systems of IBP equations was discussed in Ref. [42]. Instead of ICE, Kira uses

pyRed to identify redundant equations. pyRed is a C++ port of a component of an unpublished

integral reduction framework originally written in Python. It differs in two major ways from

the algorithm proposed in Ref. [31]. First, by using larger prime numbers in the modular

arithmetic (and optionally arrays of finite integers as coefficients), the “Monte Carlo approach”

is avoided. I.e. only a single run is required to obtain a reliable result. Second, a variant of

the Gaussian elimination algorithm is chosen which exploits the sparsity of the system of IBP

equations.

Each equation of the system is a linear combination of integrals with polynomial or rational

coefficients. In the first step, pyRed maps all coefficients to a finite integer field, which is

defined by a (large) prime number p. The required algebraic operations are defined modulo p.

In particular, because p is prime, the multiplicative inverse x ≡ a−1 of each finite integer a ∈

{0, . . . , p−1} is guaranteed to exist and can be calculated by solving the equation ax= 1 (mod p)

for x by the extended Euclidean algorithm or by modular exponentiation x= ap−2 (mod p) [43].

Numeric implementations of the former tend to be a bit more efficient than binary modular

exponentiation. All variables in the coefficients, i.e. external (Mandelstam) invariants, masses

and the dimension d are substituted by pseudo-random numbers ∈ {0, . . . , p−1}. Operations on

finite integers are of constant complexity, i.e. the time for such an operation does not depend

on the complexity of the original rational function.

The equations in the system are ordered as described in section 3.1. The forward elimination1

is then performed as follows. For each equation in the system, substitute all previous equations

in order of descending complexity. By this procedure, the sparsity of the system is retained to

a large degree, whereas this would not be the case in the standard Gaussian elimination. The

computational complexity of Gaussian elimination on a dense system of size n is of O(n3).

This also holds in the case of sparse systems which become dense in intermediate steps due

to an inconvenient choice of the forward elimination algorithm. With our algorithm, the size

of equations is largely independent of the system size, i.e. of O(1), which reduces the com-

plexity of the entire algorithm to O(n2). Note that we do not perform pivoting apart from the

initial ordering of the equations, thus avoiding the additional computational cost of a pivoting

operation. For optional usage we also implemented a forward elimination algorithm with the

pivoting of Ref. [31]. For the price of drastically inferior scaling behaviour and memory con-

sumption in pyRed this may in some cases lead to a better choice of independent equations in

the sense that the following reduction steps in Kira are more efficient.

It is sufficient to just perform the forward elimination to identify redundant equations. How-

ever, we chose to perform the backward elimination by default as well. This operation is

computationally cheap and it comes with two advantages. First, it allows us to extract the set

1Forward and backward elimination refer to the two major steps in the algorithm to bring a matrix into diagonal

form. In the forward elimination the upper triangle representation is achieved. In the following backward

elimination the diagonal form is achieved by working in the opposite direction.

10



of master integrals already at this stage. Second, it allows us to trace insertions of equations

down to a full reduction in such a way, that we can extract a subsystem of equations which may

be significantly smaller than the original system, but will suffice to fully reduce all integrals

of a user-specified list.

Note that it is in principle possible to reconstruct rational functions from finite fields (see

Ref. [41]). This was discussed in the context of Feynman integral reduction in Refs. [42]

and [44]. A private implementation for single scale reduction problems was described in [45].

For now we do not attempt to perform such a reconstruction. However, thanks to pyRed’s

capability to deal with arrays of coefficients, once a reconstruction library becomes available,

its integration into pyRed should be straight forward.

3.2.2 Gauss type forward elimination

After these preparatory steps—ordering of the equations and removal of linearly dependent

relations—the reduction procedure itself is started. A Gauss type forward elimination algo-

rithm brings the system of equations G into triangular form. The list of equations E may

contain equations which share the most complicated integral. First, Kira collects equations

Ii, which share the most complicated integral in lists of equations I(k) with elements I
(k)

ℓ
,

ℓ = 1 . . .mk, where mk is the number of equations in the list. The original system of equations

E is thus replaced by E∗,

E∗ = {I(1), . . . ,I(n)}, (23)

where the sub-lists in E∗ are ordered according to the most complicated integral within each

sub-list, and the sub-lists I(k) themselves are ordered according to section 3.1.

To produce the upper-right triangular form the following algorithm is applied.

repeat

flag = true

for I(i) in E∗:

if mi > 1:

flag = false

for j = 2, mi:

substitute I
(i)

1
→I

(i)

j

collect E∗

until (flag)

In this notation, “substitute A→ B” means that equation A is used to eliminate the integral

A1 in equation B. “collect E∗” means that the equations in E∗ are rearranged into sorted sub-

lists of equal most complicated integrals as in Eq. (23). When the algorithm terminates, E∗ is

composed of lists containing only a single equation each and an upper-right triangular form is

achieved. Note that in the implementation presented here all relations for the auxiliary inte-

grals (equations in which the most complicated integral is an auxiliary integral) are dropped.

11



3.2.3 Back substitution

Having reached the upper-right triangular form of the system the aim of the back substitution

is to express all seed integrals as linear combinations of master integrals. This is done using

the following algorithm.

E = join sub-lists E∗

for i = 1, length E:

for k = 1, i−1:

substitute Ik→Ii

end for

end for

Here, “join sub-lists E∗” converts the list of lists E∗, where each sub-list has length one, into a

plain list of equations as in Eq. (22). When the algorithm terminates all integrals are expressed

in terms of master integrals.2 In most applications the back substitution is the most time

consuming step in the reduction procedure. For multi-scale problems Kira employs a special

strategy to perform the substitution. In a first step the back substitution is performed and the

result is sorted again with respect to the master integrals. However, the coefficients are kept

as a list and are not yet combined in one coefficient. A naive combination of these coefficients

in one step is very time consuming since large intermediate expressions are generated. This is

avoided by combining the coefficients pairwise as follows:

1. Gather all coefficients in a list, sorted by the length of the coefficients.

2. A free Fermat worker process takes the two shortest coefficients from the list and com-

bines them. This is done by all worker processes in parallel.

3. Whenever two coefficients have been combined, add the result back to the list, keeping

it sorted at all times. Proceed with step two unless the length of the list is one.

The list in point 1. usually contains hundreds of coefficients, so that there is plenty of potential

for parallelization. Whenever a worker process becomes idle, because the list contains only

one item, it is assigned to another coefficient, either from a different master integral or from a

different equation.

3.2.4 Simplifying multivariate rational functions with Fermat

The integral coefficients in the Laporta system of equations are in general high degree multi-

variate rational functions of the kinematic invariants, the masses of the massive propagators,

and the dimension d. In intermediate steps the expressions tend to grow very large and must

be simplified regularly. To simplify the coefficients, Kira makes use of Fermat [46]. The

2 Strictly speaking the algorithm only guarantees to express integrals within the chosen seed in terms of a

smaller set of integrals. Equations involving integrals beyond the seed (and in some cases at the edge of the

seed) will still contain linearly dependent integrals.

12



expressions are passed to Fermat which then performs a simplification by canceling multi-

variate rational functions. The communication between Kira and Fermat is established via

gateToFermat [47] which connects the two programs using UNIX pipes.

3.2.5 Storing intermediate results using the database SQLite3

As mentioned before, the integral coefficients tend to grow during the reduction procedure.

At a certain point the main memory of the computer may no longer suffice to store the entire

system of equations. Therefore Kira writes equations to the hard disk and deletes them from

the main memory if they are no more needed to solve the remaining system. When writing the

equations no longer used for the back substitution to the hard disk the equations are no longer

ordered. To handle the stored equations in an efficient way and keep the equations ordered

on disk, an SQLite3 [48] database is used. SQLite3 provides a self-contained light-weighted

SQL database. The library takes also care to order equations encountered in subsequent write

operations according to the Laporta order described in the section 3.1.

4 Installation

4.1 Prerequisites

Kira is distributed under the terms of the:

GNU General Public License, version 3 or later as published

by the Free Software Foundation.

Kira uses the libraries GiNaC [39, 40] (which itself requires CLN [49]), yaml-cpp [50], and

zlib [51]. These must be installed before compiling Kira. In addition Kira requires the

program Fermat [46].

4.2 Compiling and installing Kira

The most recent version of Kira is available for download from

https://www.physik.hu-berlin.de/de/pep/tools

as a compressed archive kira-<version>.tar.gz, where <version> is a placeholder for

the version number. Uncompress the package and change into the extracted directory with

tar -xf kira-version.tar.gz

cd kira-<version>

and configure, build and install Kira with the following commands.

13



./configure --prefix=/path/to/install

make

make install

The --prefix option specifies the installation directory. If yaml-cpp or GiNaC, or CLN are

not found during configure, e.g. because they were not installed via the package manager,

the paths to the header files and to the libraries must be specified through environment vari-

ables. As usual this can be achieved by setting CPATH and LD LIBRARY PATH, respectively, or

by setting (in a Bourne compatible shell) e.g.

export GINAC LIBS="-L/path/to/ginac/lib -lginac"

export GINAC CFLAGS="-I/path/to/ginac/include"

if GiNaC is installed in /path/to/ginac. The corresponding environment variables for

yaml-cpp are

YAML CPP CFLAGS and YAML CPP LIBS

and

CLN CFLAGS and CLN LIBS

for CLN. Since GiNaC, CLN and yaml-cpp are linked dynamically the paths to the shared

libraries must be set explicitly (if not installed in a standard location) e.g. with

export LD LIBRARY PATH=/path/to/ginac/lib:$LD LIBRARY PATH

for the GiNaC shared library if it is located in /path/to/ginac/lib. Finally, Kira can be

started with

/path/to/install/bin/kira -h

or just

kira -h

if /path/to/install/bin has been added to the environment variable PATH. This will print

out a brief description how to use Kira together with a list of the supported command line

options.

5 Kira usage

Kira uses yaml files to specify the input and control the execution in a format which is largely

compatible with Reduze 2. As far as the main tasks are concerned, Kira can read and exe-

cute input files prepared for Reduze 2. Options viable in Reduze 2 not supported in Kira are

ignored3. A corresponding message will be shown at start-up. The usage of Kira is best il-

3A list of the Reduze2 options recognized by Kira is given at the end of this chapter.

14



lustrated with an example. Fig. 1 shows a double box topology as it occurs for example in the

q2

1
= m2

1
−k1+ p1+ p2 k2− p1− p2 p2

1
= 0

q2

2
= 0 −k1 k2 p2

2
= 0

k1+q2m2 −k1+ k2 k2− p2

Figure 1: Planar double box with one massive propagator and one massive external momentum

(double lines). All external momenta are counted ingoing. Momentum conservation

reads q1+q2+ p1+ p2 = 0.

NNLO QCD corrections to t-channel single top-quark production [52, 53]. To start a reduc-

tion Kira requires certain configuration files specifying the topologies as well as kinematic

relations. In addition, a job file describing the tasks to be performed by Kira is necessary.

In both cases the information is encoded in yaml files. Comments in yaml files are introduced

using the # sign. yaml allows one to store lists and associative lists in an easy way. In the

former case the list elements are either specified one in a line starting with - in so-called block

format or in inline format encapsulated in square brackets []. Evidently, it is also possible to

create lists of lists. In case of associative lists a colon is used to separate a key-value pair. An

example of this notation may look like

momenta:

- k1

- k2

- k3

loop_momenta: [l1, l2]

Note that yaml uses indentation for scoping, where only spaces but no tabs are allowed. The

first 4 lines in the above example define momenta as a list of the three momenta k1,k2,k3 us-

ing the block format. Similar the fifth line declares loop momenta as list of the two momenta

l1,l2 using the inline format.

The double box diagram shown in Fig. 1 has L = 2 loop momenta and E = 3 independent

external momenta. We use k1, k2 to denote the two loop momenta and q2, p1 and p2 for

the three external momenta. Momentum conservation is used to eliminate the fourth external

momentum q1. In total we can thus form N = 9 independent scalar products involving the loop

momenta k1 and k2. The scalar integral, which is associated with the Feynman diagram shown

in Fig. 1, is given by

T (a) = T (a1, . . . ,a9) =

∫

ddk1ddk2

9
∏

j=1

1

P
a j

j

, (24)

15



with

P1 = (−k1)2, P2 = (k2)2, P3 = (−k1+ k2)2, P4 = (k1+q2)2−m2
2, P5 = (k2− p2)2,

P6 = (−k1+ p1+ p2)2, P7 = (k2− p1− p2)2, P8 = (k1− p2)2, P9 = (k2−q2)2. (25)

The propagators P1, . . . ,P7 are associated with the 7 internal lines, while the propagators P8

and P9 are auxiliary propagators. Kira uses the file integralfamilies.yaml located in the

sub directory config of the working directory to provide the information about the topology.

Note that this file can contain more than one topology which are distinguished by different

names. For the example above, the file may look as follows.

#config/integralfamilies.yaml

integralfamilies:

- name: "topo7"

loop_momenta: [k1, k2]

propagators:

- ["-k1", 0]

- ["k2", 0]

- ["-k1+k2", 0]

- ["k1+q2", m2ˆ2]

- ["k2-p2", 0]

- ["-k1+p1+p2", 0]

- ["k2-p1-p2", 0]

- ["k1-p2", 0]

- ["k2-q2", 0]

Since Kira can reduce several topologies in one run, the keyword name allows one to specify

a name for each topology which can be used in other files to identify the topology and control

the reduction to be done with Kira. The keyword loop momenta is used to distinguish the

loop momenta from the external momenta. The keyword propagators is followed by a list

of the propagators. For each propagator Pi the momentum flow li and the mass mi is specified

in the format ["l i", m iˆ2]. To provide information concerning kinematic relations like

for example the masses of the external particles or the independent invariants which should

be used to express the scalar products of external momenta, the yaml file kinematics.yaml

is used. Like integralfamilies.yaml it must also be located in the subdirectory config.

For the example shown in Fig. 1 the file may have the following form.

#config/kinematics.yaml

kinematics:

incoming_momenta: [q1,q2,p1,p2]

outgoing_momenta: []

momentum_conservation: [q1,-p1-p2-q2]

kinematic_invariants:

16



- [s, 2]

- [t, 2]

- [m1, 1]

- [m2, 1]

scalarproduct_rules:

- [[p1,p1], 0]

- [[p2,p2], 0]

- [[q2,q2], 0]

- [[p1+p2, p1+p2], s]

- [[p2-q2, p2-q2], t]

- [[p1-q2, p1-q2], s-t-m1ˆ2]

symbol_to_replace_by_one: m1

The keywords incoming momenta and outgoing momenta are used to specify which exter-

nal momenta are counted ingoing and which outgoing. Since in the above example we decided

to count all momenta ingoing an empty list is provided for the outgoing momenta. The key-

word momentum conservation is used to specify which momentum can be removed by

applying momentum conservation. Here, the momentum q1 is replaced using

q1 = −p1− p2−q2. (26)

The variables which are used to denote the independent invariants are listed in the section

introduced by the keyword kinematic invariants. For each variable its name and its mass

dimension is provided in a list with two elements. The section started with the keyword

scalarproduct rules expresses the scalar products of external momenta in terms of the

invariants. To simplify the calculation it is very often useful—if not crucial—to reduce the

number of independent mass scales by one by expressing all masses and scalar products in

units of one freely chosen invariant. In these units the corresponding invariant is fixed to the

numerical value one. The number of variables to be treated symbolically is thus reduced by

one. To achieve this, the keyword symbol to replace by one is used. In the above example

the mass m1 is set to one.

As usual we assume that dimensional regularization is used to regulate divergent integrals.

Kira uses the symbol d to specify the space time dimension. The symbol d is thus reserved

and should not be used to describe momenta or invariants.

Having provided the information about the integral topology and the kinematics an additional

yaml file is used to control Kira. The following lines show a minimal example:

#jobs1.yaml

jobs:

- reduce_sectors:

sector_selection:

select_recursively:

- [topo7,127]

17



identities:

ibp:

- {r: [t,7], s: [0,1]}

Since the job file is provided as command line argument to Kira, the name can be freely

chosen by the user. This file specifies how to prepare and run the reduction. In the first stage

at runtime, the IBP and LI equations are derived in symbolic form and symmetry relations

for the respective sectors are prepared. To calculate the IBP and LI equations in symbolic

form Kira uses GiNaC [39,40]. Also the trivial sectors are identified. In the second stage, the

reduction is performed in four steps. First the system of equations is generated by evaluating

the IBP and LI equations for specific powers (‘seeds’) of the propagators. In the next step,

a linearly independent set of equations is chosen from the system of equations by the pyRed

module. In the third step, the algorithm described in section 3.2.2 is applied to derive the

upper-right triangular form. In the last step, the back substitution is performed as described in

section 3.2.3. The individual steps of the reduction can be performed in separate runs.

To select the integral sectors to be reduced the keyword sector selection is used followed

by the method to select the sectors. At the moment only one method is available, namely

select recursively: Select recursively all required sectors and sub-sectors to reduce the

specified sector for a specific topology. Topology and sector are provided as a list of the

form [topo, sector]. The sector is identified using the sector id as defined in Eq. (9).

It is possible to provide more than one pair (topology, sector).

In the above example sector 127 of topology topo7 as specified in integralfamilies.yaml

together with all required sub-sectors will be reduced.

In the setup phase Kira generates both the IBP as well as the LI relations in algebraic form.

The keyword identities controls which seeds should be used to generate the system of

equations. Note that in contrast to Reduze/Reduze 2 Kira always uses IBP and LI equations.

ibp: The allowed ranges for r and s as defined in Eq. (11). In the above example r and s

are restricted to the range r ∈ [t,7] and s ∈ [0,1]. The variable t is defined in Eq. (10).

Kira replaces the symbol t applying Eq. (10) to the current sector. If more than one

associated list specifying the range for r and s is defined the set of seeds used in the run

is the union.

Having prepared these files the working directory should contain the following files.

jobs1.yaml

config

config/integralfamilies.yaml

config/kinematics.yaml

To run the reduction Kira is started with the file name of the job file as command line argu-

ment,

18



kira jobs1.yaml

Note that to use Fermat, the path to the executable must be configured through the environ-

ment variable FERMATPATH, e.g. with

export FERMATPATH="/path/to/Fermat/fermat_executable"

After a successful run, Kira writes out the master integrals as identified during the reduction.

In addition, for all topologies specified in the file integralfamilies.yaml the result of

the reduction is stored topology wise in subdirectories of the directory results. The sector

mappings and the trivial sectors of each topology are stored topology wise in subdirectories of

the directory sectormappings. sectormappings and results are located in the working

directory. In the above example only one topology is reduced and the directories results and

sectormappings contain only one subdirectory topo7. The results directory contains for

each topology the following files:

id2int The definition of the scalar integrals.

kira The result of the reduction.

kira.db An SQLite3 database storing the result of the reduction. The data can be inspected

using the program SQLite3.

masters The potential master integrals as identified through the numerical reduction.

masters.final The potential master integrals as identified at the end of the reduction.

The sectormappings directory contains for each topology the following files:

IBP The IBP equations in symbolic form.

LI The LI equations in symbolic form.

nonTrivialSector The list of non-zero sectors. The second number counts the number of

propagators.

sectorRelations Relations between sectors as determined by Kira.

sectorSymmetries Symmetries relating different integrals as determined by Kira

topology ordering The order of the topologies as specified by the user.

trivialsector The list of zero sectors.

For the example discussed here, the result of the reduction for topo7 as stored in the file Kira

may look:

- Eq:

- [7697655529472,0,14,0,2,"1"]

- [7696581394432,0,14,0,2,"(2*s+d-2)/d"]

19



- Eq:

- [7697655791616,0,14,0,1,"1"]

- Eq:

- [7697655267328,0,14,0,2,"1"]

- [7696581394432,0,14,0,2,"((-d+2)*t)/d"]

...

Each equation is started with the keyword -Eq: and contains a list of integrals appearing in

the equation. In the example only the first few lines of the output file are shown. The first

entry of each list denotes the left hand side of the equation—the integral which is expressed

in terms of the master integrals. The entries in the square bracket denote

– the ID of the integral,

– an integer specifying whether the integrals is a seed integral (0) or an auxiliary integral

(-1)4,

– the variable S as defined in Eq. (9),

– the topology T ,

– the length of the equation (=total number of integrals in the equation),

– and the algebraic coefficient of the corresponding integral.

To reduce the memory consumption during the run all integrals are mapped to an integer

used to uniquely identify the integral. The definition of the integral ID’s is stored in the file

results/topo7/id2int. The following lines show an example:

- [7696581394432,0,1,1,1,0,0,0,0,0,14,0,3,0,0,0]

- [7697655136256,-1,1,1,1,0,0,0,0,0,14,0,3,0,1,0]

- [7697655267328,0,1,1,1,-1,0,0,0,0,14,0,3,0,1,0]

- [7697655398400,0,1,1,1,0,-1,0,0,0,14,0,3,0,1,0]

- [7697655529472,0,1,1,1,0,0,-1,0,0,14,0,3,0,1,0]

...

The lines should be interpreted as follows:

[ID,a1,a2,a3,a4,a5,a6,a7,a8,a9, S ,T,t,r− t,s,debug],

with S , T , r, s, t as defined in section 2. Obviously, the specification of S , r, s, and t is

redundant since these quantities can be calculated using the information for the ai.

Converted back to standard mathematical notation the first equation in the example shown

above reads:

topo7(d,0,1,1,1,0,0,−1,0,0) =
1

d
(2 s+d−2)topo7(d,0,1,1,1,0,0,0,0,0). (27)

4 This field is mainly used for debugging. In the final result the entry should always be zero.

20



If an equation contains only one integral, the right hand side of the equation and thus the

integral is zero. If a seed integral generated in the reduction does not appear in the output file

this integral is also zero.

The following file illustrates an example in which specific tasks are to be performed.

#jobs2.yaml

jobs:

- reduce_sectors:

sector_selection:

select_recursively:

- [topo7,127]

identities:

ibp:

- {r: [t,7],s: [0,1]}

run_symmetries: true

run_initiate: true

run_pyred: true

run_triangular: true

run_back_substitution: true

Note that the two examples jobs1.yaml and jobs2.yaml perform the same tasks. The sec-

ond example is given to illustrate how specific tasks can be started manually using options

starting with run . Starting individual tasks can also be used to resume a reduction stopped at

an intermediate state.

run symmetries: This option will only prepare the reduction. In particular, the IBP and LI

equations are derived in symbolic form. Symmetry relations for the respective sector

are prepared and trivial sectors are determined.

run initiate: generate seeds in the allowed range and applies the IBP and the LI equations

and the symmetry relations. The initiated system of equations is written to the files

tmp/[topo]/SYSTEM [topo] [sector id].

The square brackets [topo] and [sector id] are replaced by the topology name and

the sector id, eg. tmp/topo7/SYSTEM topo7 31. Implies run symmetries.

run pyred: read the system of equations from the files

tmp/[topo]/SYSTEM [topo] [sector id]

and run pyRed. The result is a list of integers stored in the file

tmp/[topo]/independentEQS.

Each integer references an equation in the files

tmp/[topo]/SYSTEM [topo] [sector id].

The set of equations specifies the subset of linearly independent equations which will

be solved in later steps.

run triangular: First the information stored in the file

21



tmp/[topo]/independentEQS

specifying the independent equations in files

tmp/[topo]/SYSTEM [topo] [sector id]

is read, then the system of linearly independent equations is built. Having set up the

system the algorithm to achieve the upper-right triangular form is started and the result

is written to the files

tmp/[topo]/VER [topo] [sector id].

run back substitution: Read the system of equations from the files

tmp/[topo]/VER [topo] [sector id]

and run the algorithm for the back substitution. The result is a list of rules to express the

seed integrals through the master integrals. These relations are written to the file

results/[topo]/kira.

Kira can reduce multiple integral families in the same run if they are listed in the job file

jobs.yaml and are defined in the file integralfamilies.yaml. The following files illus-

trate this.

#config/integralfamilies.yaml

integralfamilies:

- name: "topo7"

loop_momenta: [k1,k2]

top_level_sectors: [127]

propagators:

- ["-k1", 0] #1

- ["k2", 0] #2

- ["-k1+k2", 0] #3

- ["k1+q2", "m2ˆ2"] #4

- ["k2-p2", 0] #5

- ["-k1+p1+p2", 0] #6

- ["k2-p1-p2", 0] #7

- ["k1-p2", 0] #8

- ["k2-q2", 0] #9

- name: "topo7x"

loop_momenta: [k1,k2]

top_level_sectors: [508]

propagators:

- ["k1-p2", 0] #8

- ["k2-q2", 0] #9

- ["-k1", 0] #1

- ["k2", 0] #2

- ["k1+q2", "m2ˆ2"] #4

- ["k2-p2", 0] #5

- ["-k1+k2", 0] #3

- ["k2-p1-p2", 0] #7

22



- ["-k1+p1+p2", 0] #6

Obviously, the two topologies differ only by the order of the propagators. This example illus-

trates that Kira is able to map sub-sectors of different topologies on each other and determines

a common set of master integrals for the different integral families considered in one run.

Running the reduction for the two topologies separately one will end up with different mas-

ter integrals which would need to be mapped on each other in a separate run. The following

example shows the job file to reduce both topologies (topo7 and topo7x) in one run.

Symmetries are identified topology wise and integrals are preferably mapped to topologies

which have been defined earlier and to sectors with lower ID. One may restrict symmetries

such that integrals are only mapped to sub-sectors of user-defined top-level sectors of each

topology using the following option in integralfamilies.yaml.

top level sectors: [S 1,S 2, . . .] One may define multiple sectors for each topology, S

is defined in equation (9).

The following example illustrates a couple of advanced features to tune the reduction.

#jobs3.yaml

jobs:

- reduce_sectors:

sector_selection:

select_recursively:

- [topo7, 127]

- [topo7x, 508]

identities:

ibp:

- {r: [t,7], s: [0,2]}

- {r: [t,8], s: [0,1]}

select_integrals:

select_mandatory_recursively:

- [topo7, 127, 1, 2]

- [topo7x, 508, 1, 2]

select_mandatory_list:

- [topo7, seeds7]

- [topo7x, seeds7x]

run_initiate: true

run_pyred: true

run_triangular: true

run_back_substitution: true

conditional: true

alt_dir: "/path/to/alternative_dir"

Instead of using all linearly independent equations generated from the seeds within the spec-

23



ified boundaries one can let pyRed choose a smaller system which is sufficient to reduce a

user-provided list of integrals. This is turned on with the keyword select integrals fol-

lowed by the options:

select mandatory recursively: [[topo,S ,r− t,s]] For the topology topo (speci-

fied via the file integralfamilies.yaml) choose a set of equations which is sufficient

to reduce the seed integrals bounded by (S ,r− t,s). S , r, t, s are defined in section 2.

The unreduced integrals, which are regarded as the master integrals are written to the

file results/[topo]/masters.

select mandatory list: [[topo,file]] Choose a set of equations which is sufficient

to reduce the integrals specified in the file file for topology topo. The unreduced

integrals, which are regarded as the master integrals are written to the file

results/[topo]/masters.

Note, that Kira does not guarantee that all integrals within a rectangular seed selection can

be reduced. When the option select mandatory recursively is invoked, Kira will print

the master integrals after the numerical reduction. If an integral at the edge of the seed range

appears as a master integral, this integral is unreduced. In this case the user needs to enlarge

the rectangular seed selection and restart Kira.

The option alt dir can be used to specify a directory for the intermediate and final results.

alt dir: "/path/to/alternative dir" All temporary and result files will be saved

and loaded from the directories

"/path/to/alt dir/tmp", "/path/to/alt dir/results" and

"/path/to/alt dir/sectormappings". If alt dir is not specified, the working

directory is used.

conditional: true In Kira the results of a backward substitution will be commited to the

database kira.db every 10 minutes. Since Kira version 1.1 the backward substitution

can be killed at any time. To resume the backward substitution and to load the results

from a previous run the option conditional must be set to true. An option to interrupt

the backward substitution gracefully will be provided in a future Kira version.

As mentioned before, each equation in the result file Kira represents a rule to replace a seed

integral through the master integrals. To extract the results in a specific format usable in com-

puter algebra programs like FORM [54] or Mathematica one may use the following options in

the job file.

- kira2form: With target: [[topo,seeds]] the integrals of topology topo listed in

the file seeds will be translated into a FORM readable file:

results/topo/kira seeds.inc.

With target: [[topo,S ,r − t,s]] it is possible to reconstruct all integrals for the

topology topo (specified via the file integralfamilies.yaml), which are bounded

by (S ,r− t,s). S , r, t, s are defined in section 2. The result will be written into a FORM

readable file: results/topo/kira S (r− t) s.inc.

24



If during the reduction the option alt dir: "/path/..." was used, then the option

alt dir: "/path/..." is mandatory. Kira will look for the results of the reduction

in the directory specified via the option alt dir.

- kira2math: This option is similar to the option - kira2form:. Here the results will be

written into Mathematica readable files ending with .m

By default, the dependence of coefficients in the symbol which was replaced by one during the

reduction with the option symbol to replace by one will not be reconstructed. This can be

activated with the option reconstruct mass: true. An example of a file containing the

seed integrals is shown here.

#seeds7

- [0,1,1,1,-1,0,0,0,0]

- [0,1,1,1,0,0,-1,0,0]

- [1,1,1,1,1,0,0,0,0]

- [1,1,1,1,2,0,0,0,0]

A job file extracting various identities in FORM and Mathematica readable form may look like

#export.yaml

jobs:

- kira2math:

target:

- [topo7x,seeds7x]

- [topo7,seeds7]

- [topo7,127,1,2]

reconstruct_mass: true

- kira2form:

target:

- [topo7x,seeds7x]

- [topo7,seeds7]

In case the option kira2form is used the file kira seeds7.inc contains identities of the

form

id topo7(0,1,1,1,-1,0,0,0,0) =

+ topo7(0,1,1,1,0,0,0,0,0)*(((-d+2)*t)*den(d))

;

id topo7(0,1,1,1,0,0,-1,0,0) =

+ topo7(0,1,1,1,0,0,0,0,0)*((2*s+d-2)*den(d))

;

...

25



In case kira2math is used the file kira seeds7.m looks like

{

topo7[0,1,1,1,-1,0,0,0,0] ->

+ topo7[0,1,1,1,0,0,0,0,0]*(((-d+2)*t)/d)

,

topo7[0,1,1,1,0,0,-1,0,0] ->

+ topo7[0,1,1,1,0,0,0,0,0]*(((d-2)*m1ˆ2+2*s)/d)

,

...}

The Mathematica readable format can be included in Mathematica using the command

rule = Get["results/topo7/kira_seeds7.m"];

For the above example a Mathematica session may look like this

In[1]:= rule = Get["results/topo7/kira_seeds7.m"];

In[2]:= topo7[0,1,1,1,0,0,-1,0,0] /. rule

2

((-2 + d) m1 + 2 s) topo7[0, 1, 1, 1, 0, 0, 0, 0, 0]

Out[2]= -----------------------------------------------------

d

In this example the mass m1 was reconstructed.

In addition to the options which can be specified in the configuration files the following com-

mand line arguments are recognized by Kira.

--version Print out the current Kira version.

--help Print out a brief description of the command line arguments and how to use Kira.

--silent Suppresses the output to the screen during the run. Note that the log file kira.log

is still written.

--parallel=n Run n instances of Fermat in parallel. During the back substitution signif-

icant runtime is spent for the algebraic simplification of the integral coefficients. Per-

forming this step in parallel can lead to a significant speed-up. In the current Kira

version the maximal number of parallel tasks is unlimited. The value set by the user

should not exceed the number of processor cores available. Also the generation of the

IBP and LI equations and the algorithm to build the upper-right triangular form are run

in parallel.

26



--algebra For multi-scale problems the integral coefficients tend to become rather large. In

this case the option --algebra might be useful. This enables a modified algorithm for

the back substitution and in particular the sorting algorithm described in section 3.2.3.

The following Reduze 2 options are supported in Kira:

jobs:

- reduce_sectors:

sector_selection:

select_recursively:

identities:

ibp:

integralfamilies:

- name:

loop_momenta:

propagators:

cut_propagators:

kinematics:

incoming_momenta:

outgoing_momenta:

momentum_conservation:

kinematic_invariants:

scalarproduct_rules:

symbol_to_replace_by_one:

6 Benchmarks

p2

1
= 0 p1− k1 p1− k1+ k2 q2

2
= 0

p2

2
= 0k2− p2q1− k1

m1

q2

1
= m2

1

k1

p1−q2− k1+ k2

m2 k2

Figure 2: topo4 is a non planar double box with two massive propagators and one massive

external momentum. Momentum conservation reads q1 = p1+ p2−q2.

To benchmark the performance of our implementation we study three examples, occurring

in the evaluation of NNLO corrections to t-channel single top-quark production. The first

example is the planar double box topo7 shown in Fig. 1. The second example is a non planar

topology topo4 shown in Fig. 2. The integral associated with topo4 is given by Eq. (24),

27



p2

2
= 0 k1− k2+q1

m1

k1+q1

m1

q2

1
= m2

1

p2

1
= 0 p1− k2 q2− k1 q2

2
= 0

k1

k2

k1− k2+q1− p2

m2

Figure 3: topo5 is a non planar double box with three massive propagators and one massive

external momentum. The momentum conservation reads q1 = p1+ p2−q2.

with the following definition of the propagators:

P1 = k2
1
, P2 = k2

2
, P3 = (p1− k1)2, P4 = (p2− k2)2, P5 = (p1+ p2−q2− k1)2−m2

1
,

P6 = (p1− k1+ k2)2, P7 = (p1−q2− k1+ k2)2−m2
2
, P8 = (k1−q2)2,

P9 = (k2− p1− p2)2.

The third example is the non planar topology topo5 shown in Fig. 3. This turns out to be the

most complicated topology in single top-quark production at NNLO. The integral associated

with topo5 is again given by Eq. (24), with the following propagators,

P1 = k2
1
, P2 = k2

2
, P3 = (q2− k1)2, P4 = (p1− k2)2, P5 = (q1+ k1)2−m2

1
,

P6 = (q1+ k1− k2)2−m2
1
, P7 = (−p2+q1+ k1− k2)2−m2

2
, P8 = (k1− p1)2,

P9 = (k2−q2− p2)2.

In both cases the propagators P1, . . . ,P7 are associated with the 7 internal lines, while the

propagators P8 and P9 are auxiliary propagators.

All benchmarks were run on compute nodes equipped with two Intel(R) Xeon(R) E5-2680

CPUs (8 cores/CPU) clocked at 2.70 GHz and 396 GBytes of RAM.

As described in the previous section, Kira offers the ability to reduce only selected inte-

grals using the option select integrals. We study three different types of jobs to reduce

integrals of the complexity smax = 1,2,3,4. The jobs of type default do not employ the

option select integrals. Type A jobs use the option select mandatory recursively:

[[topo,127,0,smax]], where topo is replaced by topo4 or topo7. This option forces

Kira to reduce integrals with r = t (zero dots) and s = {0, . . . , smax}. Finally, the jobs of

type B use the option select mandatory list: [[topo,list]], where topo is again

replaced by topo4 and topo7 and list is replaced by list1, list2, list3 and list4 for

smax = 1,2,3,4, respectively:

#list1

- [1,1,1,1,1,1,1, 0,-1]

- [1,1,1,1,1,1,1,-1, 0]

28



Table 1: The runtime used by Kira to reduce topology topo7 as defined in Eq. (24) and

Eq. (25). The parameter s describes the total power of propagators occurring in the

numerator. rmax is set to 7. In addition, we also give the time TpyRed used by the

pyRed module within Kira to identify the linearly dependent equations. For compar-

ison the runtime for the same reduction using Reduze 2 and FIRE 5 is shown.

Type smax TpyRed TKira TReduze 2 TFIRE 5
TpyRed

TKira

TReduze2
TKira

TFIRE5
TKira

default 1 1.1 s 142 s 2 h 17 min 0.008 51 7.1

A 1 2.6 s 49.5 s - 6.7 min 0.053 - 8.1

B 1 2.6 s 40 s - 1 s 0.065 - 0.025

default 2 4.5 s 664 s 10 h 87 min 0.007 54 7.9

A 2 4.5 s 224 s - 20.3 min 0.02 - 5.4

B 2 4.5 s 203 s - 17.6 min 0.022 - 5.2

default 3 11 s 48.5 min 28.4 h 4.7 h 0.0004 35 5.8

A 3 11 s 14.2 min - 1.47 h 0.013 - 6.2

B 3 11 s 10.7 min - 1.3 h 0.017 - 7.3

default 4 23 s 4.1 h 4.4 d 13.6 h 0.0015 25 3.3

A 4 23 s 1.2 h - 4.5 h 0.005 - 3.75

B 4 23 s 35.4 min - 3.9 h 0.01 - 6.6

29



#list2

- [1,1,1,1,1,1,1, 0,-2]

- [1,1,1,1,1,1,1,-2, 0]

- [1,1,1,1,1,1,1,-1,-1]

#list3

- [1,1,1,1,1,1,1, 0,-3]

- [1,1,1,1,1,1,1,-3, 0]

- [1,1,1,1,1,1,1,-2,-1]

- [1,1,1,1,1,1,1,-1,-2]

#list4

- [1,1,1,1,1,1,1, 0,-4]

- [1,1,1,1,1,1,1,-4, 0]

- [1,1,1,1,1,1,1,-1,-3]

- [1,1,1,1,1,1,1,-3,-1]

- [1,1,1,1,1,1,1,-2,-2]

We start our discussion with the reduction of topology topo7. In the benchmark we use the

parameter s, counting the total power of propagators in the numerator, to control the complex-

ity of the reduction. For all reductions we have checked that Kira, Reduze 2 and FIRE 55

produce the same set of master integrals and that the results for the reduced integrals agree.

Tab. 1 shows the runtime used by Kira and Reduze 2. In addition, we report also the run-

time used by the pyRed module. While the time used in pyRed is small compared to the

total runtime, removing the linearly dependent equations significantly reduces the total time

required by Kira. We observe that in the considered examples Kira is between 1–2 orders

of magnitude faster than Reduze 2. For the reduction of type default Kira is up to 1 order

of magnitude faster than FIRE 5, but for the reduction type A and type B Kira is between 1–2

orders of magnitude faster than FIRE 5.

In case of topology topo4 the additional mass scale m2 leads to a significant increase in

complexity. In single top-quark production m1 corresponds to the top-quark mass and m2 is

the W boson mass. In Ref. [52] a fixed ratio between the two masses was used to reduce the

number of independent scales and thus the complexity of the reduction. In the benchmark

presented here we follow the same strategy and set

m2
2 =

3

14
m2

1. (28)

The runtime required for the reduction of the topology topo4 is given in Tab. 2. Since in

the pyRed module the invariants are replaced by integer values the runtime for this part of

the reduction is similar to the runtime observed for the topology topo7. Again only a small

5 The used Fermat is 64 bit Linux version 5.25. For the benchmarks with Reduze2 we used version 2.1.2

(MPI build) and with FIRE5 we used version 5.2.

30



Table 2: Same as Tab. 1 but for topology topo4. (rmax is set to 7.) In all reductions one

mass scale is removed using the ratio m2
2
= 3

14
m2

1
. Reduze 2, FIRE 5 and Kira were

initialized with 11 cores.

Type smax TpyRed TKira TReduze 2 TFIRE 5
TpyRed

TKira

TReduze2
TKira

TFIRE5
TKira

default 1 2.8 s 90 s 2.1 h 23 min 0.03 86 15.3

A 1 2.8 s 23.6 s - 19.3 min 0.11 - 49

B 1 2.8 s 16.1 s - 1.6 s 0.17 - 0.1

default 2 9.8 s 6.6 min 7.2 h 2.3 h 0.02 65 21

A 2 11.3 s 167 s - 2.2 h 0.07 - 47

B 2 11.2 s 160 s - 2.2 h 0.07 - 50

default 3 28 s 43 min 22.8 h 7.6 h 0.01 32 10.6

A 3 30.4 s 539 s - 7.4 h 0.06 - 49.4

B 3 30.1 s 444 s - 7.5 h 0.07 - 61

default 4 67 s 2.4 h 2.7 d 23.5 h 0.007 26 9.8

A 4 70.2 s 35.3 min - 22.4 h 0.03 - 38

B 4 69.5 s 24 min - 22.4 h 0.05 - 56

31



fraction of the total runtime is required to identify the linearly dependent equations. Even for

the most complicated reduction the required runtime is roughly a minute. Reduze 2, FIRE 5

as well as Kira were all started with 11 cores allowing to perform a significant part of the

reduction in parallel. The examples presented in Tab. 1 and Tab. 2 require very little memory.

An amount of 4 GBytes is sufficient to run the examples. In Tabs. 1 and 2 we observe that the

jobs of type A and type B improve the runtime of Kira by a factor of 3–5 compared to the job

of type default without selecting the integrals with the option select integrals.

Table 3: The run time TpyRed for pyRed which is called by Kira is shown and compared to the

total time TKira, which Kira needed for a complete reduction of the topology topo4

and topo5 keeping the full mass dependence. Kira was initialized with the options

--algebra and --parallel=13.

Topology rmax smax TpyRed TKira
TpyRed

TKira

topo4 8 3 41 s 14 h 0.0008

7 4 130 s 10 h 0.003

topo5 8 2 94 s 3 d 0.0003

8 3 125 s 8 d 0.0002

7 4 237 s 7 d 0.0004

As a final benchmark we study the reduction of topo4 and topo5 keeping the full mass

dependence. The runtime required is shown in Tab. 3. The reduction was done using 13

processor cores. In addition, the command line option --algebra was used to reduce the

time required for the back substitution. Comparing the results for topology topo4 shown in

Tab. 2 and Tab. 3, we observe that the additional mass scale leads to significant increase in

the total runtime. As mentioned before, the time required by the pyRed module to eliminate

the linearly dependent equations is only mildly affected since this part is based on integer

arithmetic. For topo4 the total runtime is of the order of 10 hours while for topo5 the most

challenging reductions take roughly one week. Most of the time is spent on the algebraic

simplifications of the integral coefficients using Fermat. This is also reflected in significantly

increased memory consumption. To reproduce the results shown in Tab. 3 about 90 GBytes

of RAM is required in Kira plus around 10 GBytes for each Fermat instance. Again, for all

reductions we have checked that Kira and Reduze 2 produce the same set of master integrals.

To compare the reduction against Reduze 2 we ran Reduze 2 with numerical input values for

the kinematics instead of symbolic input.

The gain in performance using the option --algebra is illustrated in Tab. 4. As expected the

improvement depends on the complexity. For the simplest case (smax = 1) the total runtime

is roughly reduced by a factor 2. Increasing the complexity (smax = 3) a total speed-up by

roughly a factor 4.5 is achieved.

32



Table 4: Runtime used for the reduction of topology topo4 keeping the full mass dependence

for different complexities smax. rmax is set to 7. Kira is started with different com-

mand line options.

smax TBack substitution TTotal options

1 495 s 543 s --algebra --parallel=16

1 1108 s 1156 s --parallel=16

2 2920 s 3354 s --algebra --parallel=16

2 6683 s 7096 s --parallel=16

3 13203 s 13664 s --algebra --parallel=16

3 59905 s 60370 s --parallel=16

7 Conclusion

In this article we presented a new implementation of the Laporta algorithm to reduce multi-

loop Feynman integrals to a small set of master integrals. Compared to previous implementa-

tions an algorithm based on modular arithmetic is used to eliminate linearly dependent equa-

tions from the set of IBP and LI relations. Using only the linearly independent equations the

system is brought into upper triangle form using a straight forward Gauss elimination. For

the backward substitution an optimized procedure delaying the expression swell of intermedi-

ate expressions has been implemented. Removing linearly dependent equations in combina-

tion with the optimized back substitution leads to a significant increase in performance when

complicated topologies are reduced. Particularly multi-scale problems benefit from these im-

provements. To illustrate the mentioned features we have successfully reproduced various

reductions occurring in the calculation of the NNLO corrections to single top-quark produc-

tion. We also stress that the algorithm is not limited to two-loop corrections but can be applied

also to higher loop reductions.

Acknowledgments: J.U. would like to thank Bas Tausk for his very useful discussions

during the early stage of this project. We wish to express our special thanks to Andreas von

Manteuffel, Tord Riemann and Bas Tausk for a careful reading of the manuscript and useful

comments. The work of J.U. is supported by the research training group GRK-1504 “Masse,

Spektrum, Symmetrie” funded by the German research foundation (DFG). P.M. acknowledges

support by the state of Baden-Württemberg through bwHPC and the German Research Foun-

dation (DFG) through grant no INST 39/963-1 FUGG.

33



References

[1] M. Czakon, P. Fiedler, and A. Mitov, Total Top-Quark Pair-Production Cross Section at

Hadron Colliders Through O(α4
s), Phys. Rev. Lett. 110 (2013) 252004,

arXiv:1303.6254 [hep-ph].

[2] R. Boughezal, F. Caola, K. Melnikov, F. Petriello, and M. Schulze, Higgs boson

production in association with a jet at next-to-next-to-leading order,

Phys. Rev. Lett. 115 no. 8, (2015) 082003, arXiv:1504.07922 [hep-ph].

[3] X. Chen, T. Gehrmann, E. W. N. Glover, and M. Jaquier, Precise QCD predictions for

the production of Higgs + jet final states, Phys. Lett. B740 (2015) 147–150,

arXiv:1408.5325 [hep-ph].

[4] J. M. Lindert, K. Melnikov, L. Tancredi, and C. Wever, Top-bottom interference effects

in Higgs plus jet production at the LHC, arXiv:1703.03886 [hep-ph].

[5] S. Borowka, N. Greiner, G. Heinrich, S. Jones, M. Kerner, J. Schlenk, U. Schubert, and

T. Zirke, Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with

Full Top-Quark Mass Dependence, Phys. Rev. Lett. 117 no. 1, (2016) 012001,

arXiv:1604.06447 [hep-ph]. [Erratum: Phys. Rev. Lett.117,no.7,079901(2016)].

[6] A. Gehrmann-De Ridder, T. Gehrmann, E. W. N. Glover, A. Huss, and T. A. Morgan,

Precise QCD predictions for the production of a Z boson in association with a hadronic

jet, Phys. Rev. Lett. 117 no. 2, (2016) 022001, arXiv:1507.02850 [hep-ph].

[7] R. Boughezal, J. M. Campbell, R. K. Ellis, C. Focke, W. T. Giele, X. Liu, and

F. Petriello, Z-boson production in association with a jet at next-to-next-to-leading

order in perturbative QCD, Phys. Rev. Lett. 116 no. 15, (2016) 152001,

arXiv:1512.01291 [hep-ph].

[8] R. Boughezal, C. Focke, X. Liu, and F. Petriello, W-boson production in association

with a jet at next-to-next-to-leading order in perturbative QCD,

Phys. Rev. Lett. 115 no. 6, (2015) 062002, arXiv:1504.02131 [hep-ph].

[9] M. Grazzini, S. Kallweit, D. Rathlev, and M. Wiesemann, W±Z production at hadron

colliders in NNLO QCD, Phys. Lett. B761 (2016) 179–183,

arXiv:1604.08576 [hep-ph].

[10] M. Grazzini, S. Kallweit, and D. Rathlev, Wγ and Zγ production at the LHC in NNLO

QCD, JHEP 07 (2015) 085, arXiv:1504.01330 [hep-ph].

[11] T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel, S. Pozzorini,

D. Rathlev, and L. Tancredi, W+W− Production at Hadron Colliders in Next to Next to

Leading Order QCD, Phys. Rev. Lett. 113 no. 21, (2014) 212001,

arXiv:1408.5243 [hep-ph].

[12] F. Caola, K. Melnikov, R. Röntsch, and L. Tancredi, QCD corrections to W+W−

34

http://dx.doi.org/10.1103/PhysRevLett.110.252004
http://arxiv.org/abs/1303.6254
http://dx.doi.org/10.1103/PhysRevLett.115.082003
http://arxiv.org/abs/1504.07922
http://dx.doi.org/10.1016/j.physletb.2014.11.021
http://arxiv.org/abs/1408.5325
http://arxiv.org/abs/1703.03886
http://dx.doi.org/10.1103/PhysRevLett.117.079901, 10.1103/PhysRevLett.117.012001
http://arxiv.org/abs/1604.06447
http://dx.doi.org/10.1103/PhysRevLett.117.022001
http://arxiv.org/abs/1507.02850
http://dx.doi.org/10.1103/PhysRevLett.116.152001
http://arxiv.org/abs/1512.01291
http://dx.doi.org/10.1103/PhysRevLett.115.062002
http://arxiv.org/abs/1504.02131
http://dx.doi.org/10.1016/j.physletb.2016.08.017
http://arxiv.org/abs/1604.08576
http://dx.doi.org/10.1007/JHEP07(2015)085
http://arxiv.org/abs/1504.01330
http://dx.doi.org/10.1103/PhysRevLett.113.212001
http://arxiv.org/abs/1408.5243


production through gluon fusion, Phys. Lett. B754 (2016) 275–280,

arXiv:1511.08617 [hep-ph].

[13] F. Caola, J. M. Henn, K. Melnikov, A. V. Smirnov, and V. A. Smirnov, Two-loop helicity

amplitudes for the production of two off-shell electroweak bosons in gluon fusion,

JHEP 06 (2015) 129, arXiv:1503.08759 [hep-ph].

[14] F. Cascioli, T. Gehrmann, M. Grazzini, S. Kallweit, P. Maierhöfer, A. von Manteuffel,

S. Pozzorini, D. Rathlev, L. Tancredi, and E. Weihs, ZZ production at hadron colliders

in NNLO QCD, Phys. Lett. B735 (2014) 311–313, arXiv:1405.2219 [hep-ph].

[15] F. Caola, K. Melnikov, R. Röntsch, and L. Tancredi, QCD corrections to ZZ production

in gluon fusion at the LHC, Phys. Rev. D92 no. 9, (2015) 094028,

arXiv:1509.06734 [hep-ph].

[16] J. Currie, T. Gehrmann, A. Huss, and J. Niehues, NNLO QCD corrections to jet

production in deep inelastic scattering, arXiv:1703.05977 [hep-ph].

[17] C. Anastasiou, C. Duhr, F. Dulat, E. Furlan, T. Gehrmann, F. Herzog, A. Lazopoulos,

and B. Mistlberger, High precision determination of the gluon fusion Higgs boson

cross-section at the LHC, JHEP 05 (2016) 058, arXiv:1602.00695 [hep-ph].

[18] I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, and J. Usovitsch, The two-loop

electroweak bosonic corrections to sin2 θb
eff

, Phys. Lett. B762 (2016) 184–189,

arXiv:1607.08375 [hep-ph].

[19] I. Dubovyk, J. Gluza, T. Riemann, and J. Usovitsch, Numerical integration of massive

two-loop Mellin-Barnes integrals in Minkowskian regions, PoS LL2016 (2016) 034,

arXiv:1607.07538 [hep-ph].

[20] I. Dubovyk, A. Freitas, J. Gluza, T. Riemann, and J. Usovitsch, 30 years, some 700

integrals, and 1 dessert, or: Electroweak two-loop corrections to the Zb̄b vertex, PoS

LL2016 (2016) 075, arXiv:1610.07059 [hep-ph].

[21] F. V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization

Group Functions, Phys. Lett. B100 (1981) 65–68.

[22] K. G. Chetyrkin and F. V. Tkachov, Integration by Parts: The Algorithm to Calculate

beta Functions in 4 Loops, Nucl. Phys. B192 (1981) 159–204.

[23] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions,

Nucl. Phys. B580 (2000) 485–518, arXiv:hep-ph/9912329 [hep-ph].

[24] S. Laporta, High precision calculation of multiloop Feynman integrals by difference

equations, Int.J.Mod.Phys. A15 (2000) 5087–5159,

arXiv:hep-ph/0102033 [hep-ph].

[25] C. Anastasiou and A. Lazopoulos, Automatic integral reduction for higher order

perturbative calculations, JHEP 07 (2004) 046, arXiv:hep-ph/0404258 [hep-ph].

35

http://dx.doi.org/10.1016/j.physletb.2016.01.046
http://arxiv.org/abs/1511.08617
http://dx.doi.org/10.1007/JHEP06(2015)129
http://arxiv.org/abs/1503.08759
http://dx.doi.org/10.1016/j.physletb.2014.06.056
http://arxiv.org/abs/1405.2219
http://dx.doi.org/10.1103/PhysRevD.92.094028
http://arxiv.org/abs/1509.06734
http://arxiv.org/abs/1703.05977
http://dx.doi.org/10.1007/JHEP05(2016)058
http://arxiv.org/abs/1602.00695
http://dx.doi.org/10.1016/j.physletb.2016.09.012
http://arxiv.org/abs/1607.08375
http://arxiv.org/abs/1607.07538
http://arxiv.org/abs/1610.07059
http://dx.doi.org/10.1016/0370-2693(81)90288-4
http://dx.doi.org/10.1016/0550-3213(81)90199-1
http://dx.doi.org/10.1016/S0550-3213(00)00223-6
http://arxiv.org/abs/hep-ph/9912329
http://dx.doi.org/10.1016/S0217-751X(00)00215-7
http://arxiv.org/abs/hep-ph/0102033
http://dx.doi.org/10.1088/1126-6708/2004/07/046
http://arxiv.org/abs/hep-ph/0404258


[26] A. V. Smirnov, Algorithm FIRE – Feynman Integral REduction, JHEP 10 (2008) 107,

arXiv:0807.3243 [hep-ph].

[27] A. V. Smirnov and V. A. Smirnov, FIRE4, LiteRed and accompanying tools to solve

integration by parts relations, Comput. Phys. Commun. 184 (2013) 2820–2827,

arXiv:1302.5885 [hep-ph].

[28] A. V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction,

Comput. Phys. Commun. 189, 182 (2015), arXiv:1408.2372 [hep-ph]].

[29] C. Studerus, Reduze-Feynman Integral Reduction in C++,

Comput. Phys. Commun. 181 (2010) 1293–1300,

arXiv:0912.2546 [physics.comp-ph].

[30] A. von Manteuffel and C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction,

arXiv:1201.4330 [hep-ph].

[31] P. Kant, Finding Linear Dependencies in Integration-By-Parts Equations: A Monte

Carlo Approach, Comput. Phys. Commun. 185 (2014) 1473–1476,

arXiv:1309.7287 [hep-ph].

[32] R. N. Lee and A. A. Pomeransky, Critical points and number of master integrals,

JHEP 11 (2013) 165, arXiv:1308.6676 [hep-ph].

[33] A. Georgoudis, K. J. Larsen, and Y. Zhang, Azurite: An algebraic geometry based

package for finding bases of loop integrals, arXiv:1612.04252 [hep-th].

[34] R. N. Lee, LiteRed 1.4: a powerful tool for reduction of multiloop integrals,

J. Phys. Conf. Ser. 523 (2014) 012059, arXiv:1310.1145 [hep-ph].

[35] B. Ruijl, T. Ueda, and J. A. M. Vermaseren, Forcer, a FORM program for the

parametric reduction of four-loop massless propagator diagrams,

arXiv:1704.06650 [hep-ph].

[36] H. Ita, Two-loop Integrand Decomposition into Master Integrals and Surface Terms,

Phys. Rev. D94 no. 11, (2016) 116015, arXiv:1510.05626 [hep-th].

[37] K. J. Larsen and Y. Zhang, Integration-by-parts reductions from unitarity cuts and

algebraic geometry, Phys. Rev. D93 no. 4, (2016) 041701,

arXiv:1511.01071 [hep-th].

[38] R. N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction,

arXiv:1212.2685 [hep-ph].

[39] C. W. Bauer, A. Frink, and R. Kreckel, Introduction to the GiNaC framework for

symbolic computation within the C++ programming language, J. Symb. Comput. 33

(2000) 1, arXiv:cs/0004015 [cs-sc].

[40] J. Vollinga, GiNaC: Symbolic computation with C++,

Nucl. Instrum. Meth. A559 (2006) 282–284, arXiv:hep-ph/0510057 [hep-ph].

36

http://dx.doi.org/10.1088/1126-6708/2008/10/107
http://arxiv.org/abs/0807.3243
http://dx.doi.org/10.1016/j.cpc.2013.06.016
http://arxiv.org/abs/1302.5885
http://dx.doi.org/10.1016/j.cpc.2014.11.024
http://arxiv.org/abs/1408.2372
http://dx.doi.org/10.1016/j.cpc.2010.03.012
http://arxiv.org/abs/0912.2546
http://arxiv.org/abs/1201.4330
http://dx.doi.org/10.1016/j.cpc.2014.01.017
http://arxiv.org/abs/1309.7287
http://dx.doi.org/10.1007/JHEP11(2013)165
http://arxiv.org/abs/1308.6676
http://arxiv.org/abs/1612.04252
http://dx.doi.org/10.1088/1742-6596/523/1/012059
http://arxiv.org/abs/1310.1145
http://arxiv.org/abs/1704.06650
http://dx.doi.org/10.1103/PhysRevD.94.116015
http://arxiv.org/abs/1510.05626
http://dx.doi.org/10.1103/PhysRevD.93.041701
http://arxiv.org/abs/1511.01071
http://arxiv.org/abs/1212.2685
http://arxiv.org/abs/cs/0004015
http://dx.doi.org/10.1016/j.nima.2005.11.155
http://arxiv.org/abs/hep-ph/0510057


[41] M. Kauers, Fast solvers for dense linear systems,

Nucl. Phys. Proc. Suppl. 183 (2008) 245–250.

[42] A. von Manteuffel and R. M. Schabinger, A novel approach to integration by parts

reduction, Phys. Lett. B744 (2015) 101–104, arXiv:1406.4513 [hep-ph].

[43] J. von zur Gathen, and J. Gerhard, Modern Computer Algebra (3rd ed.), Cambridge

University Press, (2013).

[44] T. Peraro, Scattering amplitudes over finite fields and multivariate functional

reconstruction, JHEP 12 (2016) 030, arXiv:1608.01902 [hep-ph].

[45] A. von Manteuffel and R. M. Schabinger, Quark and gluon form factors to four-loop

order in QCD: the N3
f

contributions, Phys. Rev. D95 no. 3, (2017) 034030,

arXiv:1611.00795 [hep-ph].

[46] R. H. Lewis, Computer Algebra System Fermat. http://www.bway.net/lewis.

[47] M. Tentioukov, gateToFermat. http://science.sander.su/FLink.htm.

[48] SQLite, SQLite3, version: 3.14.2. https://www.sqlite.org.

[49] B. Haible and R. B. Kreckel, CLN - Class Library for Numbers, version 1.3.4.

http://www.ginac.de/CLN.

[50] YAML, YAML Ain’t Markup Language. http://yaml.org.

[51] J.-L. Gailly and M. Adler, ZLIB. http://zlib.net.

[52] M. Assadsolimani, P. Kant, B. Tausk, and P. Uwer, Calculation of two-loop QCD

corrections for hadronic single top-quark production in the t channel,

Phys. Rev. D90 no. 11, (2014) 114024, arXiv:1409.3654 [hep-ph].

[53] M. Brucherseifer, F. Caola, and K. Melnikov, On the NNLO QCD corrections to

single-top production at the LHC, Phys. Lett. B736 (2014) 58–63,

arXiv:1404.7116 [hep-ph].

[54] J. A. M. Vermaseren, New features of FORM, arXiv:math-ph/0010025 [math-ph].

37

http://dx.doi.org/10.1016/j.nuclphysbps.2008.09.111
http://dx.doi.org/10.1016/j.physletb.2015.03.029
http://arxiv.org/abs/1406.4513
http://dx.doi.org/10.1007/JHEP12(2016)030
http://arxiv.org/abs/1608.01902
http://dx.doi.org/10.1103/PhysRevD.95.034030
http://arxiv.org/abs/1611.00795
http://dx.doi.org/10.1103/PhysRevD.90.114024
http://arxiv.org/abs/1409.3654
http://dx.doi.org/10.1016/j.physletb.2014.06.075
http://arxiv.org/abs/1404.7116
http://arxiv.org/abs/math-ph/0010025

	Introduction
	Preliminaries
	Laporta Algorithm – Implementation
	Ordering of integrals and equations
	Reduction procedure
	Selection of linearly independent equations
	Gauss type forward elimination
	Back substitution
	Simplifying multivariate rational functions with Fermat
	Storing intermediate results using the database SQLite3


	Installation
	Prerequisites
	Compiling and installing Kira

	Kira usage
	Benchmarks
	Conclusion

