
DESY 10-200
HU-EP-10/74
SFB/CPP-10-109

NGluon: A Package to Calculate One-loop Multi-gluon Amplitudes

S. Badgera, B. Biedermannb and P. Uwerb

aDeutsches Elektronensynchrotron DESY
Platanenallee 6, D–15735 Zeuthen, Germany

&
The Niels Bohr International Academy and Discovery Center

The Niels Bohr Institute
Blegdamsvej 17, DK-2100 Copenhagen, Denmark

bHumboldt-Universität zu Berlin, Institut für Physik
Newtonstraße 15, D-12489 Berlin, Germany

Abstract

We present a computer library for the numerical evaluation of colour-
orderedn-gluon amplitudes at one-loop order in pure Yang-Mills theory.
The library uses the recently developed technique ofgeneralised unitarity.
Running in double precision the library yields reliable results for up to 14
gluons with only a small fraction of events requiring a re-evaluation using
extended floating point arithmetic. We believe that the library presented
here provides an important contribution to future LHC phenomenology.
The program may also prove useful in cross checking results obtained by
other methods. In addition, the code provides a sample implementation
which may serve as a starting point for further developments.

Program summary

Title of program: NGluon

Version: 1.0

Catalogue number:

Program summary URL: http://www.physik.hu-berlin.de/pep/tools

E-mail: Simon.Badger@nbi.dk,
Benedikt.Biedermann@Physik.HU-Berlin.de,
Peter.Uwer@Physik.HU-Berlin.de

License: GNU Public License

Computers: Any computer platform supported by the GNU compiler
suite.

Operating system: —no specific requirements—, tested on Scientific Linux 5.2

Program language: C++

Memory required to execute: Depending on the complexity, for realistic applications like
10 gluon production in double precision below 10 MB

Other programs called: —none—

External files needed: QCDLoop, qd

Keywords: unitarity method, one-loop corrections

Nature of the physical problem: Evaluation of next-to-leading order corrections for gluon
scattering amplitudes in pure gauge theory.

Method of solution: Purely numerical approach based on tree amplitudes ob-
tained via Berends-Giele recursion combined with unitarity
method

Restrictions on complexity of the
problem:

Running in double precision the number of gluons should
not exceed 14

Typical running time: Depending on the number of external gluons between less
than a milli second (4 gluons) up to a 1s (14 gluons) per
phase space point.

2

1. Introduction

The Large Hadron Collider at CERN allows the exploration of acomplete new energy regime
and will help us to unravel the mechanism of electroweak symmetry breaking. However,
the large QCD background to essentially all major signal processes makes any potential dis-
covery at the LHC a highly non-trivial endeavour. A necessary prerequisite is thus a solid
understanding of the QCD backgrounds. This includes sophisticated methods to determine
the background from data but also improved theoretical calculations providing reliable pre-
dictions. Leading-order predictions in QCD are usually plagued by large uncertainties due to
the residual scale dependence. For reliable predictions higher order corrections, in particu-
lar next-to-leading order (NLO) calculations, are mandatory. With an increasing number of
particles involved in the hard scattering process the evaluation of the corresponding one-loop
amplitudes becomes more and more complicated. In recent years considerable progress has
been made towards a fully automated procedure for NLO corrections to perturbative QCD
cross sections. The virtual corrections to multi-particleamplitudes were for a long time con-
sidered to be the bottleneck in multi-jet cross sections predictions for high energy hadron
collisions at the Tevatron and LHC. Over the past 15 years essentially two methods have been
used. One is the traditional approach based on the evaluation of Feynman diagrams. In this
approach the large number of Feynman diagrams and related tothat the increasing algebraic
complexity may actually put limitations on the processes which are feasible following this
technique. Also numerical stability and speed are non-trivial issues. However despite these
problems many important results have been obtained along these lines (see for example [1–3],
we refer to Ref. [4] for a more complete review of the current status). The second method
makes use of unitarity and in its original version tries to reconstruct the loop amplitudes via
the Cutkosky rules. The first applications of this method to jet physics date back to the mid
nineties [5, 6]. At that time the method was used only by very few groups. This situation has
changed dramatically in the past five years and the method of using unitarity cuts to construct
one-loop gauge theory amplitudes is by now well established. In more recent years, thanks
to a deeper understanding in the role of complex analysis, the procedure has been generalised
to incorporate multiple cuts [7] effectively reducing the computation of one-loop amplitudes
to an algebraic procedure where the only input from the underlying field theoretical model is
provided by the respective Born amplitudes. For a detailed description of various aspects of
this approach we refer to the vast literature on the subject [8–19].

In this work we follow the algorithm ofD-dimensional generalised unitarity [17, 20] which
is closely related to the integrand reduction of Ossola, Papadopoulos and Pittau (OPP) [8].
This procedure has been implemented successfully in a number of independent, private, codes
[21–25] that have been recently applied to phenomenological NLO QCD studies (see for ex-
ample Refs. [26–36]). In addition two public codes implementing the OPP integrand reduction
procedure have been released [37,38].

This article is organised as follows. In section 2 we give a brief overview of the on-shell tech-
niques implemented in theNGluon C++ package. In section 3 we describe how to install the
package from the source files. A short description of the various public member functions is

3

presented in section 4. In section 5 we give some basic examples on how to use the pack-
age and show a detailed analysis on the performance in terms of speed and accuracy before
reaching the conclusions in section 6.

2. Methods

Since the method has been described in detail in the literature, in this section we present a
basic overview of the generalised unitarity procedure focusing on the algorithm employed in
NGluon. We restrict the discussion to the purely massless case throughout. Owing to the
choice of the Van Neerven-Vermaseren basis for the loop momenta, our implementation most
closely resembles that used by theRocket collaboration [17,20].

We split the one-loop gluon amplitudesA(1)
n into two contributions:

A(1)
n = A(1),cc

n +R(1)
n , (1)

The cut-constructible partA(1),cc
n , which contains all logarithms and divergences, may be com-

puted using four-dimensional cuts. The remaining rationaltermsR(1)
n must be extracted us-

ing additional information from cuts in 4− 2ε dimensions. It is well known that the cut-
constructible part can be written in terms of a basis of scalar integrals with a maximum of
four propagators. Restricting ourselves to the case of massless propagators we write the cut-
constructible term as,

A(1),cc
n = ∑

i, j ,k,l

C4;i| j |k|l I4;i| j |k|l + ∑
i, j ,k

C3;i| j |k I3;i| j |k +∑
i, j

C2;i| j I2;i| j , (2)

whereI4, I3 andI2 denote the scalar four-, three- and two-point one-loop integrals. Denoting
the set of external momenta as{pi}, i = 1,n, we label the possible internal propagators as:

Pi =
1
Di

=
1

(ℓ−qi)2 , (3)

with an integeri, whereqi = ∑i
m=0 pm. In this notation we takep0 = 0. The scalar integrals

are then given by the collection of propagators as specified by the second multi-index, i.e.

I4;i| j |k|l =
Z

dDℓ

(2π)D

1
DiD jDkDl

. (4)

For QCD processes these integrals are known in the frameworkof dimensional regulari-
sation [39–42] and have been more recently made available ina number of public codes
FF/QCDloop [43, 44], LoopTools [45] andOneLOop [46]. Therefore, the only process de-
pendent information in Eq. (2) are the rational coefficients, C4,C3 andC2.

4

The rational partRn can be derived by taking theε → 0 limit of the expanded integral basis in
higher dimensions [17]. After terms of higher order inε are discarded we can write,

R(1)
n = −1

6 ∑
i, j ,k,l

C[4]
4;i| j |k|l −

1
2 ∑

i, j ,k

C[2]
3;i| j |k−∑

i, j

si, j−1

6
C[2]

2;i| j . (5)

As we will discuss later the super-scripts correspond to thepolynomial structure of theD-
dimensional integrands. We choose to extract the values of these coefficients by performing
the cuts in four dimensions with an internal mass carrying theD-dimensional information. The
coefficients are then computed from the large mass limit of the four-dimensional case. This is
a numerical translation of the method described in Ref. [19]which has also been used in the
recent computation ofW/Z+3 j andW +4 j by theBlackHat collaboration [26, 28, 29, 47].
Alternatively one can extract the same coefficients by interpolating the result of computations
in higher integer dimensions as described by Giele, Kunszt and Melnikov [17].

We follow a top-down approach, starting with the leading singularity coming from box contri-
butions, working through the triangles to the bubbles. At each stage all possible configurations
of propagators are put on-shell where the one-loop amplitude factorises into products of tree
level amplitudes. Knowledge of the amplitude coming from higher cuts is then systematically
removed in such a way that the integral coefficients can be uniquely identified and their value
determined using purely algebraic methods.

2.1. Universal pole structure

The poles in the dimensional regularisation parameter,ε, have a universal structure which, for
the case of massless QCD, has been known for some time, see forexample [48]. This serves
as an internal cross check for our computation and takes an extremely simple form for the
colour-ordered gluon amplitudes considered in this paper,

A(1)
n ({pk})|poles=

[

11
3ε

− 1
ε2

n

∑
i=1

(

µ2
R

−si,i+1

)ε]

A(0)
n ({pk}), (6)

wheresi,i+1 = (pi + pi+1)
2 andµR is the regularisation scale.

2.2. Tree-level amplitudes

The main ingredient for the construction of the one-loop amplitude is an efficient evaluation
of the tree-level amplitudes entering each cut. We have chosen to implement Berends-Giele
recursion relations [49] for the gluonic tree amplitudes and the amplitudes with a pair of
massive scalars relevant for the rational terms. This givesus the benefit of polynomial growth
in speed with the number of gluons.

5

2.3. Cut integrals and the loop momentum parametrisation

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

������
������
������
������
������
������

������
������
������
������
������
������ D1

D2

D2

D3

D4

D5

D5

D6

p1

p1

p1

p1

p2
p2

p2

p2

p3

p3

p3

p3

p4

p4

p4

p4

p5

p5

p5

p5

p6p6

p6p6

p7

p7

p7

p7

l1

l1

(a)

(b)

×N (l1, {pi})

×N (l1, {pi})

Figure 1: Figure 1(a) shows the labelling of the propagatorsin the integral representation of the
amplitude. Figure 1(b) shows a generic quadruple cut where propagatorsD1,D3,D4

andD6 are replaced by on-shell delta functions and the amplitude factorises into a
product of four tree amplitudes.

We choose to compute the four-dimensional complex momenta appearing as solutions to the
cut constraints using the van-Neerven-Vermaseren basis [50] as described in Refs. [17, 20].
An alternative approach is to use a Weyl spinor basis as used by Blackhat [21] and within the
OPP approach of Ref. [51].

A complete discussion of the method has been clearly presented in Refs. [17, 20]. Here we
review the essential details specific to our implementation. A general representation of the cut
integrals appearing inn-particle one-loop processes is,

A(1)
n ({pi})

∣

∣

k−cut =
Z

dDℓ1

(4π)D

(

k

∏
i=1

δ(Di)Di

)

N (ℓ1,{pi})
∏n

j=1D j
, (7)

where the propagators and external momenta are defined in eq.(3). The general loop momen-
tum parametrisation for thek-particle cut in four dimensions is then written as

ℓ
µ
1;k = Vµ

k +
5−k

∑
i=1

αin
µ
i , (8)

6

where the unit vectorsnµ
i span the trivial space orthogonal to the physical space vector Vµ

k :

Vk ·n j = 0, ni ·n j = δi j , (9)

wherei, j = k. . .4. The physical space vectorVµ
k can be determined from the external mo-

menta{pi}.

2.4. Cut-constructible contributions

2.4.1. The box coefficients

The first step is to compute the leading singularity of the one-loop amplitude coming from
the quadruple cuts. We construct all possible ways to cut four propagators in the amplitude,
in each case using the on-shell delta functions to freeze theloop integration. The general
solution to the on-shell constraints yields two complex solutions and the final result for the
box coefficient is simply the sum over the product of four trees evaluated at each solution [7].
We first denote the integrand, summed over internal helicities, as

C4;i| j |k|l = ∑
h1,h2,h3,h4

A(0)(−ℓ−h1
1 ,Ki, j−1, ℓ

h2
2)A(0)(−ℓ−h2

2 ,K j ,k−1, ℓ
h3
3)

×A(0)(−ℓ−h3
3 ,Kk,l−1, ℓ

h4
4)A(0)(−ℓ−h4

4 ,Kl ,i−1, ℓ
h1
1), (10)

whereKm,n−1 denote sums over external momenta defined asKm,n−1 = ∑n−1
i=m pi . The integrand

has a polynomial structure depending on a vectorn1 in the trivial space satisfyingKi, j−1 ·n1 =
0, K j ,k−1 ·n1 = 0, Kk,l−1 ·n1 = 0 andn1 ·n1 = 1,

C4;i| j |k|l(ℓ1) = C4;i| j |k|l +C̃4;i| j |k|l n1 · ℓ1. (11)

It has been shown in Ref. [20] that

C4;i| j |k|l =
1
2

(

C4;i| j |k|l(ℓ
+
1)+C4;i| j |k|l(ℓ

−
1)
)

(12)

C̃4;i| j |k|l =
1

2
√

∆4

(

C4;i| j |k|l(ℓ
+
1)−C4;i| j |k|l(ℓ

−
1)
)

, (13)

where the Gram determinant∆4 can be written in terms of the momenta entering the propaga-
tors as,

∆4 = det(G), Gi j = qi ·q j . (14)

It is a convenient feature of the van Neerven-Vermaseren basis that∆4 andn1 appear naturally
in the construction of the on-shell loop momenta.

7

2.4.2. The triangle coefficients

With only three on-shell constraints, the loop integrationof the triple cut has a single degree of
freedom. Building upon the work of [52], it was shown in Ref. [8] that by parameterising the
integrand using unit vectorsn1 andn2 spanning the trivial space, the unknown information can
be extracted as the solution to a system of linear equations.Forde then elegantly demonstrated
that one can use simple complex analysis to show how the box contributions untangle from
the triple cut and a subtracted integrand with polynomial behaviour leads directly to the scalar
triangle coefficient [9]. Following the construction of [20], we implement this procedure by
writing the integrand as,

C3;i| j |k = ∑
h1,h2,h3

A(0)(−ℓ−h1
1 ,Ki, j−1, ℓ

h2
2)A(0)(−ℓ−h2

2 ,K j ,k−1, ℓ
h3
3)A(0)(−ℓ−h3

3 ,Kk,l−1, ℓ
h1
1)

−∑
l

C4;i| j |k|l(ℓ1)

(ℓ1−Kl)2 . (15)

The polynomial structure in the trivial space can then be written [20]:

C3;i| j |k(ℓ1) = C(0)
3;i| j |k +C(1)

3;i| j |kα1+C(2)
3;i| j |kα2+C(3)

3;i| j |k(α
2
1−α2

2)

+C(4)
3;i| j |kα1α2+C(5)

3;i| j |kα2
1α2+C(6)

3;i| j |kα1α2
2, (16)

whereαk = nk · ℓ1, k = 1,2. The scalar triangle coefficient is simplyC3;i| j |k = C(0)
3;i| j |k. We

extract the coefficientsC(m)
3;i| j |k using a discrete Fourier projection.

2.4.3. Bubble coefficients

The construction of the scalar bubble coefficients is analogous with the triangle case consid-
ered above. We construct the integrand by subtracting the relevant combination of triangle and
box coefficients from the double cut.

C2;i| j = ∑
h1,h2

A(0)(−ℓ−h1
1 ,Ki, j−1, ℓ

h2
2)A(0)(−ℓ−h2

2 ,K j ,i−1, ℓ
h1
1)

−∑
k

C3;i| j |k(ℓ1)

(ℓ1−Kk)2 − 1
2∑

k,l

C4;i| j |k|l(ℓ1)

(ℓ1−Kk)2(ℓ1−Kl)2 . (17)

There are now three vectors spanning the trivial space so theintegrand can be written in terms
of nine independent coefficients [20],

C2;i| j =C(0)
2;i| j +C(1)

2;i| jα1+C(2)
2;i| jα2+C(3)

2;i| jα3+C(4)
2;i| j(α

2
1−α2

3)

+C(5)
2;i| j(α

2
2−α2

3)+C(6)
2;i| jα1α2+C(7)

2;i| jα1α3+C(8)
2;i| jα2α3, (18)

8

whereαk = nk · ℓ1, k = 1,3. For the massless amplitudes considered here we do not needto

proceed to reduce further and extract the tadpole coefficients. The computation ofC2;i| j =C(0)
2;i| j

completes the calculation of the cut-constructible terms.Again we use the discrete Fourier
projection to efficiently compute the coefficients.

2.5. Rational Contributions

Using a super-symmetric decomposition of the gluonic loop [6] one can show that the rational
terms for our one-loop amplitude are the same as those comingfrom contributions with a
scalar loop. The information coming from the 4−2ε-dimensional cuts can be encapsulated by
adding a mass parameter to the four-dimensional loop momenta,

ℓ[4−2ε] = ℓ[4] + ℓ[−2ε], (19)

whereℓ2
[−2ε] = −µ2. We then proceed to extract the coefficients of Eq. (5) from cuts with a

massive scalar running inside the loop [15, 16, 19, 47, 53]. We note that the supersymmetric
decomposition relates the rational part of the gluon amplitude to that of a complex scalar.
Therefore, in order to match with Eq. (5), the products of trees are all multiplied by a factor
of two.

2.5.1. The pentagon coefficients

An additional complication in the numerical computation oftheD-dimensional pieces is the
presence of a non-zero pentagon coefficient. Although such acontribution will vanish explic-
itly in an analytical calculation here we are forced to include them to ensure a numerically
stable result. There is no trivial space for this contribution and the result appears solely as a
subtraction term for the box coefficient. The coefficient is then simply [17],

R5;i| j |k|l = 2A(0)
S (−ℓ1,Ki, j−1, ℓ2)A(0)

S (−ℓ2,K j ,k−1, ℓ3)

×A(0)
S (−ℓ3,Kk,l−1, ℓ4)A(0)

S (−ℓ4,Kl ,m−1, ℓ5)A(0)
S (−ℓ5,Km,i−1, ℓ1). (20)

The five on-shell constraints can be satisfied by fixing the four coefficients of the loop mo-
mentum using,

{2ℓ1 ·Ki, j−1 = K2
i, j−1,2ℓ1 ·Ki,k−1 = K2

i,k−1,2ℓ1 ·Ki,l−1 = K2
i,l−1,2ℓ1 ·Ki,m−1 = K2

i,m−1}, (21)

and additionally setting theD-dimensional mass byµ2 = ℓ2
1. The implementation inNGluon

chooses to implement a solution to these on-shell constraints using two-dimensional Weyl-
spinors along the lines of those used in Refs. [8, 9, 19] sincewe found it more efficient and
numerically stable than the van-Neerven basis solution used in Ref. [17]. This allows us to
avoid the computation of any 4×4 determinants.

9

2.5.2. The box coefficients

Since we compute theD-dimensional coefficientC[4]
4 from four-dimensional massive cuts, the

first part of the calculation proceeds exactly as in the cut-constructible case. The quadruple
cut together with the pentagon subtraction is a polynomial in µ2 from which we can extract
the coefficients using a discrete Fourier projection.

R4;i| j |k|l =2A(0)
S (−ℓ1,Ki, j−1, ℓ2)A(0)

S (−ℓ2,K j ,k−1, ℓ3)

×A(0)
S (−ℓ3,Kk,l−1, ℓ4)A(0)

S (−ℓ4,Kl ,i−1, ℓ1)

−∑
m

C5;i| j |k|l |m
(ℓ1−Km)2 . (22)

The polynomial form of the integrand is,

R4;i| j |k|l(ℓ1(µ
2)) = R(0)

4;i| j |k|l +n1 · ℓ1R(1)
4;i| j |k|l

+µ2
(

R(2)
4;i| j |k|l +n1 · ℓ1R(3)

4;i| j |k|l

)

+µ4
(

R(4)
4;i| j |k|l +n1 · ℓ1R(5)

4;i| j |k|l

)

, (23)

whereC[4]
4;i| j |k|l = R(4)

4;i| j |k|l . Performing the four-dimensional extraction three times is then suf-
ficient to extract all the coefficients. We choose the mass integration to lie on a circle of radius
µ0,

µ2
m = µ2

0exp

(

2πim
3

)

, (24)

so the explicit solution becomes

R(2p)
4;i| j |k|l =

5

∑
m=0

1

2µ2p
m

(

R4;i| j |k|l(ℓ
+
1 (µ2

m))+R4;i| j |k|l(ℓ
−
1 (µ2

m))
)

(25)

R(2p+1)
4;i| j |k|l =

5

∑
m=0

1

2µ2p
m
√

∆4

(

R4;i| j |k|l(ℓ
+
1 (µ2

m))−R4;i| j |k|l(ℓ
−
1 (µ2

m)),
)

(26)

with p = 0,1,2. It is important to choose the value of the radius of integration, µ0, such
that the quadruple cut and subtraction terms are of the same order of magnitude. There are
various ways to do this. InNGluon the radius is scaled with respect to the largest pentagon
contribution that occurs in the subtractions in order to maximise numerical stability. Since the
rank of tensor integrals is constrained to be of maximum fourin gauge theory, it will always

be the case thatR(5)
4;i| j |k|l = 0. This can be a useful test of the accuracy of the computationof

R4;i| j |k|l .

2.5.3. The triangle coefficients

At this stage the method should be quite clear. We proceed to extract the triangle coefficients
from the massive scalar loop, sampling over the mass parameter to find the coefficient con-
tributing the the rational term. In order to have an integrand with polynomial behaviour we

10

must subtract both pentagon and box contributions from the product of trees,

R3;i| j |k =2A(0)
S (−ℓ1,Ki, j−1, ℓ2)A

(0)
S (−ℓ2,K j ,k−1, ℓ3)A

(0)
S (−ℓ3,Kk,i−1, ℓ1)

−∑
l

R4;i| j |k|l
(ℓ1−Kl)2 −

1
2∑

l ,m

R5;i| j |k|l |m
(ℓ1−Kl)2(ℓ1−Km)2 . (27)

The polynomial structure of the integrand can be written:

R3;i| j |k(ℓ1) = R(0)
3;i| j |k +R(1)

3;i| j |kα1+R(2)
3;i| j |kα2+R(3)

3;i| j |k(α
2
1−α2

2)

+R(4)
3;i| j |kα1α2+R(5)

3;i| j |kα2
1α2+R(6)

3;i| j |kα1α2
2

+µ2
(

R(7)
3;i| j |kα1+R(8)

3;i| j |kα2+R(9)
3;i| j |k

)

, (28)

whereα1,α2 are identical to that of the cut-constructible triangle. The Fourier projection over
the mass proceeds as in the box contributions except we are required to sample over more
points due to the larger number of independent coefficients.

2.5.4. The bubble coefficients

No new features appear in the extraction of this final term in the amplitude so we simply write
down the formulae for the integrand and it’s polynomial structure. We point readers towards
Refs. [8,17,18,20,21] for further details,

R2;i| j =2A(0)
S (−ℓ1,Ki, j−1, ℓ2)A

(0)
S (−ℓ2,K j ,i−1, ℓ1)−∑

k

R3;i| j |k
(ℓ1−Kk)2

− 1
2∑

k,l

R4;i| j |k|l
(ℓ1−Kk)2(ℓ1−Kl)2 −

1
6 ∑

k,l ,m

R5;i| j |k|l |m
(ℓ1−Kk)2(ℓ1−Kl)2(ℓ1−Km)2 , (29)

and

R2;i| j =R(0)
2;i| j +R(1)

2;i| jα1 +R(2)
2;i| jα2+R(3)

2;i| jα3+R(4)
2;i| j(α

2
1−α2

3)

+R(5)
2;i| j(α

2
2−α2

3)+R(6)
2;i| jα1α2+R(7)

2;i| jα1α3+R(8)
2;i| jα2α3+µ2R(9)

2;i| j . (30)

αi are the same as those in Eq. (18) and the coefficient of eq. Eq. (5) isC[2]
2;i| j = R(9)

2;i| j .

3. Installation

NGluon uses the GNU compiler suite and is available as a tarball,NGluon-1.0.tar.gz, from
http://www.pep.physik.hu-berlin/tools.
If NGluon is used withoutQCDLoop and without theqd extension the g++ compiler is sufficient
to compile and install the package. To do this first unpack thearchive using:

11

tar xvfz NGluon-1.0.tar.gz

You can then move to the directoryNGluon-1.0 and typemake. This will build theNGluon
library (for static linking):libNGluon.a. The object files and library are placed into the direc-
tory NGluon-1.0 /obj. In addition an example applicationNGluon-demo will be created. We
note that most of the files found inNGluon-1.0 belong to the sample application. In particular
these files contain additional code to generate phase space points and analytic results. For the
details we refer to Tab. 1 where a short description of the files is given. The upper block of
the table describes the files necessary to build the library.Files in the lower block are needed
only for the example applications. We will not describe filesin the lower block in detail since
they are only provided for illustrative purpose and are not part of theNGluon package itself.

Without a library for the scalar one-loop integralsNGluon calculates the coefficients of the
scalar integrals as well as the rational part. However sinceall the scalar integrals are set to one
the full result for the full amplitude is meaningless. As a consequence most of the tests which
can be found inNGluon-demo.cpp will not work. To obtain the full functionalityNGluon
should be combined with a library for the evaluation of the scalar one-loop integrals.NGluon
is prepared for use withFF [43] andQCDLoop [42] for the evaluation of the scalar integrals.
The package has been tested withQCDLoop-1.9 which can be downloaded at the following
address:
http://qcdloop.fnal.gov/
Note that per defaultQCDLoop uses g77. Since g77 is no longer supported we recommend to
switch to gfortran. If g77 shall be used the user needs to adopt the makefile inNGluon-1.0 .
In particular the linker options have to be adjusted to enable the linking of code compiled with
the fortran compiler together with the main program compiled with g++. To useQCDLoop the
user should first install theQCDLoop library. For the details how to do this we refer to the
QCDLoop documentation.

To link QCDLoop with NGluon it is sufficient to edit the configuration ofNGluon which is con-
trolled via the file:Makefile.inc. To includeQCDLoop the variableENABLE_QL is changed
to ENABLE_QL=yes. In addition the path to theQCDLoop-1.9 installation (theQCDLoop-1.9
directory) needs to be be configured through the variableQLDIR in Makefile.inc. Typing,

make clean
make

will then compile a version ofNGluon including the scalar one-loop integrals from theQCDLoop
library.

NGluon is also prepared to work with extended floating point arithmetic as provided for ex-
ample by the qd library [54]. The library can be obtained at the following address:
http://crd.lbl.gov/~dhbailey/mpdist/
NGluon has been tested with versionqd-2.3.11.

Once theqd library has been installed one may easily compile quadrupleand octuple precision
versions ofNGluon via Makefile.inc. Simply changeENABLE_DD=yes (“double-double”)

12

NGluon library
File name Functionality
NGluon.h Header file for NGluon
NGluon.cpp Source file with the implementation of the unitarity method
Current.h Header file for Berends-Giele related functions
Current.cpp Implementation of the Berends-Giele recursion
Coefficients.h Definition of storage used internally
LoopIntegrals.cpp Interface toQCDLoop
LoopIntegrals.h Interface toQCDLoop
mytypes.h Header file to switch to extended precision usingqd

Sample application
File name Functionality
analytic.h Header file for analytic formulae
analytic.cpp Implementation of some analytic formulae
NGluon-demo.cpp Example application
GKM.cpp Results from Ref. [17]
GKM.h Results from Ref. [17]
GZ.cpp Results from Ref. [22]
GZ.h Results from Ref. [22]
FourMomentum.h Four momentum class
histogram.h Simple histogram functionality
phasespace.cpp Phase space generation
phasespace.h Phase space generation

Make files
File name Functionality
Makefile Makefile to built the libraries and compile the example applications.
Makefile.all Makefile specific instances of the library and create driectory structure
Makefile.inc Configuration file for the Makefile

Table 1: Files included in theNGluon package. In the upper part files belonging to theNGluon
library itself are listed. In the lower part files which are only used by the example
applicationNGluon-demo are shown.

13

or ENABLE_QD=yes (“quad-double”) in the configuration fileMakefile.inc. The path to the
library and the location of the header files needs to be configured viaQDLIB andQDINCLUDE.
Again,

make clean
make

will then compile the relevant versions of theNGluon library placing the library and object
files into the directoriesNGluon-1.0 /obj, NGluon-1.0 /obj-dd andNGluon-1.0 /obj-qd.
Up to three versions of the test program are also created inNGluon-1.0 : NGluon-demo,
NGluon-demo-dd andNGluon-demo-qd. Since the object files are put into different directo-
ries, the different versions do not interfere with each other and can be used in parallel. Note
that the floating point arithmetic used inQCDLoop is not changed. In particular, if numerical
instabilities arise in the evaluation of the scalar integrals they would not be cured by switching
to extended precision.

If specific compiler options are required these options mustbe added also inMakefile.inc
via theCFLAGS variable. Non-standard locations for other libraries may be added toLIBS,
LFLAGS andIFLAGS.

One can switch the compiler via the standard makefile variableCXX. The degree of optimisa-
tion can be changed viaOPT though we recommend-O2.

4. Description

We decided to encapsulate the entire implementation in a class calledNGluon. The main
purpose of this approach is to hide most of the internal data required to store partial results
from the user. To instantiate an object of theNGluon class the following constructor is used
(the only one available):

NGluon loop_amp(ngluon,moms,helicities);

wherengluon is an integer denoting the number of gluons, andmoms specifies a pointer to
an array containing the momentum configuration with the momenta counted outgoing. The
corresponding C++ definition would be:

DOUBLE moms[ngluon][4].

Note that we use everywhere the preprocessor macroDOUBLE instead of the built-in data type
double. Using theqd library [54] this allows us to create a version of the programus-
ing extended floating point arithmetic by simply recompiling the program. The header file
mytypes.h takes care to set the macroDOUBLE to the required value that is eitherdd_real

14

or qd_real when compiling with extended precision ordouble when built-in double preci-
sion shall be used. Instead of the preprocessor variable to control the data type, we could have
used C++ templates. However, code generation via the compiler is much harder to control
in this case. In addition this approach often leads to longerexecutables which may affect the
performance in a negative way. The last argument in the constructor specifies an integer array
where the helicities (±1) for the gluons are stored. The corresponding C/C++ definition reads:

int helicities[ngluon].

Note that these arrays are not copied by theNGluon class, only the address of the arrays
is stored in theNGluon object. After updating the momentum configuration or the helicity
configurationNGluon will thus automatically use the updated quantities in the next call. We
note also that it is not foreseen to change the number of gluons after theNGluon object has
been constructed. To study amplitudes with differing numbers of gluons a new instance must
be constructed for each case. Since all local data is stored inside the class, these instances do
not interfere with each other. In principle the class itselfshould also be thread-safe.

Below we give a list of all public methods together with a short description.

static void setVerbosity(VERBOSITY output_);
This function controls the verbosity of theNGluon class. UsingNGluon::QUIET as argument
turns all debugging information off whileNGluon::FULL switches to maximal verbosity.

void setMuR(DOUBLE muR_);
Used to set the renormalisation scale used in the scalar one-loop integrals. Per default the
renormalisation scale is set to 1.

void setScaleTest(bool scaleTest_);
If the argument istrue the function switches the scale test on. For a detailed description see
below. We note that if the scale test is switched on the runtime doubles, however a reliable
estimate for the accuracy is provided for the final result. Bydefault the scale test is switched
off.

std::complex<DOUBLE> evalAmp();
Calling this function will evaluate the n-gluon amplitude for the momentum and helicity con-
figuration provided in the constructor. The return value is the finite part of the amplitude.

std::complex<DOUBLE> getAfinite(),
std::complex<DOUBLE> getAtree(),
std::complex<DOUBLE> getAeps2(),
std::complex<DOUBLE> getAeps1(),
std::complex<DOUBLE> getAcc(),
std::complex<DOUBLE> getArat():
These functions give access to the finite part of the one-loopamplitude as well as to individual
contributions like the value of the corresponding tree amplitude, the 1/ε2- and 1/ε-poles as
well as the cut-constructible (cc) and the rational part (rat).

15

std::complex<DOUBLE> getAbsError(),
std::complex<DOUBLE> getAbsErrorEps1(),
std::complex<DOUBLE> getAbsErrorEps2(),
std::complex<DOUBLE> getAbsErrorRR():
these functions provide an estimate for the absolute uncertainty of individual contributions.
For the details how these estimates are obtained see the discussion at the end of this section.

DOUBLE getRelError(),
DOUBLE getRelErrorCC(),
DOUBLE getRelErrorRR(),
DOUBLE getRelErrorEps1(),
DOUBLE getRelErrorEps2():
Similar to the functions described above. However instead of an estimate for the absolute
uncertainty the relative uncertainty is returned.

DOUBLE IRpoles(const int eps);
This function returns the IR poles obtained from the analytic formulae (see Eq. (6)) for the
given momentum and helicity configuration. The return valueis the pre-factor multiplying the
corresponding born amplitude without the pole itself. Foreps=-2 the 1/ε2-pole is returned.
Foreps=-1 the 1/ε-pole is returned. The result is used as a cross check of the results obtained
by NGluon from the direct numerical evaluation.

static void sethel(int ngluon, int htype, int helicity[]);
The function creates specific helicity configurations forngluon gluons. The configuration is
stored in the array specified as third argument. More specifically the configurations are:

htype configuration
0 (+)n

1 −(+)n−1

2 −− (+)n−2

3 (−+)n/2

4 (+−)n/2

static void sethel(int ngluon, std::string hstr, int helicity[]);
The function sets the helicity configuration forngluon gluons specified through a string in the
form "+-++-...".

static std::string helicity2string(const int ngluon, int hel[]);
The function converts a helicity configuration forngluon gluons specified through the integer
arrayint hel[] into a string.

A crucial point in the numerical evaluation of one-loop amplitudes is the control of numerical
uncertainties and instabilities. To assure the correctness of the calculated scattering amplitudes
we need checks to test the reliability of the results. Where analytic results are known, we may
compare with them and we discuss such comparisons in the nextsection. However in most
cases analytic results are not available. In such cases important information can be obtained

16

from testing general properties of the amplitudes. Such a test is for example provided by the
evaluation of the IR poles of the amplitude. The IR poles are analytically known due to the
universal structure of IR phenomena in QCD. We can thus compare what we obtain from the
numerical evaluation with what is predicted by QCD. This check tests the coefficients of the
IR divergent triangle and box integrals. More precisely a specific linear combination of these
coefficients is checked. Similar the UV structure which is also known analytically can be
used as a test. This check provides information on the coefficients of the two-point integrals.
Testing the remaining parts of the cut-constructible contribution to the full amplitude as well
as the test of the rational part is more involved. Useful information may be obtained from
the evaluation of the Fourier projection. It is possible to calculate further terms in the Fourier
projection which are predicted to be zero. One can then checkto what extend the numerical
results are compatible with zero. This gives important information on the accuracy of the
Fourier projection. An important property of this check is that the additional computing effort
is moderate. However, the interpretation of the result of this check in terms of errors on specific
coefficients might be non-trivial in particular when large cancellations between individual
coefficients take place. Since a solid error estimate is crucial, we developed a simple but
very effective method to get a reliable estimate. It is basedon the simple observation that
we can rescale the momenta and recalculate the amplitude. Owing to the rescaling we call
this testscale test. From a physical point of view the test corresponds to use twodifferent
units in specifying the momenta, i.e. MeV and GeV for example. Since we know how the
amplitudes scale when we rescale the momenta it is possible to compare the two results with
each other. Naively, one could expect to get precisely the same result. This could be true
even in the presence of rounding errors if the scaling would only affect the exponent of the
floating point representation. However, rescaling with a factor which cannot be absorbed into
a shift of the exponent in the binary representation of the floating point number will lead to
a different mantissa. The floating point arithmetic thus becomes different. That is digits in
the final result which are affected by rounding errors or numerical instabilities will change.
That gives us a very simple method to check the reliability ofindividual contributions to the
amplitude even for contributions where no analytic resultsare available. We should mention
that this luxury comes at the price of a doubled runtime sinceevery phase space point is
calculated twice. For dedicated comparisons between different codes or with analytic formula
we feel however that the effort is well spent. In practical applications one would use the scale
test only for phase space points where we have indications — based on the checks described
before — that the result might be unreliable. If the scale test leads to the result that the point is
reliable this procedure is less computing extensive than switching to extended accuracy which
would be done only if the scale test leads to the conclusion that the accuracy does not meet
the requirements. As described above the test can be switched on and off using the function
setScaleTest. We will illustrate the scale test in the next section.

17

5. Usage and examples

Before discussing the performance of the implementation, let us first present a simple example
to illustrate how the package is used. All results of this section were produced using the
programNGluon-demo which is included in the package. The user can thus easily reproduce
the numerical results presented in this article. The fileNGluon-demo.cpp may also serve in
providing further examples how to useNGluon. The following example which we will discuss
in detail is taken from the routineGZcheck in NGluon-demo.cpp. The routine compares
results obtained withNGluon with results given in Ref. [22]:

void GZcheck(){

cout << "\n\n";
cout << "---\n";
cout << "Numerical comparison with values published in: \n";
cout << "Giele,Zanderighi: \n";
cout << "On the Numerical Evaluation of One-Loop Amplitudes:\n";
cout << "The Gluonic Case.\n";
cout << "JHEP 0806:038,2008. \n";
cout << "---\n";
cout << "\n\n";

cout.setf(ios_base::scientific, ios_base::floatfield);
cout.precision(15);

const int nlist[7]={6,7,8,9,10,15,20};

DOUBLE k[20][4];
int helicities[20];
int ngluon;

DOUBLE GZres[5][4];

for(int ngidx=0; ngidx<7; ngidx++){
ngluon = nlist[ngidx];
cout << "-------------------------------"

<<"--------------------------------\n";
cout << "#Number of gluons = " << ngluon << endl;
cout << "-------------------------------"

<<"--------------------------------\n";
GZsetmom(ngluon,k,GZres);
NGluon loop_amp(ngluon,k,helicities);
loop_amp.setMuR(double(ngluon*ngluon));

DOUBLE res;
for(int hidx=0;hidx<5;hidx++){

18

NGluon::sethel(ngluon,hidx,helicities);
cout << "Helicities: " << NGluon::helicity2string(ngluon,helicities)

<< endl;
loop_amp.evalAmp();
cmp("tree ","(GZ) ",loop_amp.getAtree(),GZres[hidx][0],res);
cmp("|Aeps2| ","(GZ) ",loop_amp.getAeps2(),GZres[hidx][1],res);
cmp("|Aeps1| ","(GZ) ",loop_amp.getAeps1(),GZres[hidx][2],res);
cmp("|Afinite|","(GZ) ",loop_amp.getAfinite(),GZres[hidx][3],res);

}
}

}

The arraysDOUBLE k[20][4] andint helicities[20] are used to store the momentum
and helicity configuration as described before. We loop overthe examples of 6,7,8,9,10,15,
and 20 gluons as presented in Ref. [22]. Inside the loop we load first the momentum con-
figuration as specified in Ref. [22] by callingGZsetmom(ngluon,k,GZres). The function
GZsetmom(ngluon,k,GZres) loads also the results as given in Ref. [22] (Tab. 1 – Tab. 7
in Ref. [22]). The next step is then to create an object of theNGluon class. The renormali-
sation scale is set to the value used in Ref. [22] and the scaletest is switched off. It follows
a loop over the different helicity configurations used in Ref. [22]. The configurations are set
usingNGluon::sethel(ngluon,hidx,helicities). By callingloop_amp.evalAmp() the
matrix element for the specific configuration is evaluated. In the next lines the individual con-
tributions to the amplitude are retrieved from theNGluon class and compared with the results
as shown in Ref. [22]. Compiling the fileNGluon-demo.cpp this test can be run through
the command line option--GZcheck. The result from the comparison will be printed on the
screen. An example run is shown in the appendix A.1. For smallnumber of gluons we find
good agreement with Ref. [22]. For the examples with a largernumber of gluons the agreement
is getting worse. The examples for high multiplicities werecalculated in extended precision
in Ref. [22]. We also tried to switch to extended precision, however we do not observe a sig-
nificant improvement. We believe that this is due to the fact that the momentum configuration
is only given with double accuracy. Since momentum conservation and on-shellness are satis-
fied only to 15 digits switching to extended accuracy does notgive significant improvement in
this case. Using the option--GKMcheck the program will compare with results published in
Ref. [17]. The sample output is shown in appendix A.2. In caseof the 5 gluon amplitude we
observed a discrepancy for the helicity configurations−−+++ and−+−++. We believe
that this is due to a mismatch in the helicity labeling since we get agreement when we flip the
helicities to++−−− and+−+−−.

19

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

 5⋅103

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

N
um

be
r

of
 E

ve
nt

s

Accuracy

Scaling Test vs Analytic Formulae

+ + + + + +
− + + + + +
− − + + + +

Figure 2: Test of the accuracy estimated from the scale test.

20

5.1. Accuracy

5.1.1. The scale test

AlthoughNGluon can be compiled to work with extended precision all checks inthis section
are obtained in double precision. This gives a direct measure for the numerical stability of
the program. In the practical application one may resort to extended floating point precision,
to recalculate phase space points which could not be calculated in double precision. Since
some of the checks make use of the scale test described in the previous section we first assess
the question how reliable this test is. To do so we study a 6-gluon amplitude, where analytic
results for different helicity configurations are available [10, 12, 19, 55, 56]. For the helicity
configurations(+)6, −(+)5 and−− (+)4 50000 phase space points passing the same cuts
as used in Ref. [17] were generated. The kinematic cut is applied to restrict the phase space
points to the “physical region” avoiding soft and collinearconfigurations which may introduce
further numerical instabilities. Note that in a real application the IR safe jet algorithm would
provide this cut. For the 50000 phase space points the matrixelements were calculated using
NGluon with the scale test switched on. In addition also the analytic formulae are used to
calculate the matrix element. We estimate the absolute uncertainty δs from the scale test by
taking the difference of the two results (after rescaling).The absolute uncertainty estimated
from the comparison with the analytic result is defined as thedifference of the numerical result
and the result obtained from the evaluation of the analytic formula. The absolute uncertainties
are converted to relative ones and the absolute value is taken. The logarithm of the relative
uncertainty provides an easy measure for the accuracy:

ds = log

(

2
δs

A1+A2

)

= log

(

2
A1−A2

A1+A2

)

, (31)

and

da = log

(

2
δa

A1+Aa

)

= log

(

2
A1−Aa

A1+Aa

)

(32)

whereAi are the two numerical results andAa the one from the evaluation of the analytic
formula. In the ideal case the two uncertainties would be 100% correlated. In Fig. 2 we show
the distribution of

ds

da
−1. (33)

As one can see most of the events are located close to zero. Thescale test gives thus a reliable
estimate for the uncertainty. It is clear that the two methods to assess the uncertainty will
not return precisely the same result. However, from the small width of the distribution we
conclude that the scale test can replace the analytic comparison when no analytic results are
available. Inspecting Fig. 2 in detail we observe that the distribution is slightly shifted to the
right. This shift could be due to the details of the floating point arithmetic combined with
the fact that we assume that the results based on the analyticformulae are always correct.
For events where we estimate an accuracy of ten or even more digits the evaluation of the
analytic formula may also not be precise enough to compare with. Another effect might be

21

that accidentally we may estimate for a specific event a higher accuracy than we actually have.
It is possible that just by chance a digit which is already outof numerical control agrees. This
could happen in the comparison with the analytic result as well as in the scale test. Due to the
prejudice that the analytic results are always correct thiscould lead to a shift in one direction.

5.1.2. n-point MHV amplitude

To perform further checks on the correctness of the code and also the performance with
respect to numerical accuracy/stability we analysed the accuracy for different phase space
points for amplitudes of different complexity. More specifically, we consider the case of
n = 4,5,6,8,10,12 gluons. The number of phase space points for each case is fixed through
the requirement that each test should be done in less than a couple of hours. (For 4–6 glu-
ons we used 1000000 phase space points, for 8 gluons we used 200000, for 10 gluons 50000
and for 12 gluons 30000 phase space points were used.) We analysed the accuracy for the
1/ε2,1/ε poles as well as the accuracy for the finite part. The events were binned according
to the accuracy. We take again the logarithm of the relative uncertainty as a measure for the
accuracy. The result is shown in Fig. 3. We considered the MHVamplitudes since analytic
results for the rational part exist. The rational part is numerically the most complicated contri-
bution. The accuracy can thus be taken as a pessimistic pointof view. In all cases — even for
high multiplicities — we observe that the leading IR singularities can be determined with high
accuracy. The accuracy is never worse than−7. For the 4 gluon amplitude we find that the
different contributions — pole parts and finite parts — show similar behaviour. The accuracy
is sufficiently good for most of the phenomenological applications at the LHC (if not for all).
However, since in that case also analytic results are available this is not of any practical use.
Beyondn = 4 the distributions show a similar behaviour for different number of gluons. The
1
ε -poles follow to some extend the finite parts. With increasing number of gluons the peak of
the distributions is shifted to the right. With more gluons the computation is getting more in-
volved, and the average accuracy decreases. Due to the logarithmic scale the histograms may
be misleading. We note that for the most complicated case shown in Fig. 3 — the 12 gluon
amplitude — only about 3% of all events have an accuracy above−3. In table Tab. 2 we show
the fraction of events with an accuracy above−3. In all cases the fraction shown is evaluated

n gluons bad points [%]
4 —
5 0.03
6 0.06
8 0.2
10 0.8
12 3.

Table 2: Fraction of events with an accuracy above−3.

for the−− (+)n−2 configuration. Considering different configurations may change the frac-

22

100

101

102

103

104

105

-15 -10 -5 0

N
um

be
r

of
 e

ve
nt

s

Accuracy

4 gluon MHV amplitude
ε-2

ε-1

ε0

100

101

102

103

104

105

-15 -10 -5 0

N
um

be
r

of
 e

ve
nt

s

Accuracy

5 gluon MHV amplitude
ε-2

ε-1

ε0

100

101

102

103

104

105

-15 -10 -5 0

N
um

be
r

of
 e

ve
nt

s

Accuracy

6 gluon MHV amplitude
ε-2

ε-1

ε0

100

101

102

103

104

105

-15 -10 -5 0

N
um

be
r

of
 e

ve
nt

s

Accuracy

8 gluon MHV amplitude
ε-2

ε-1

ε0

100

101

102

103

104

-15 -10 -5 0

N
um

be
r

of
 e

ve
nt

s

Accuracy

10 gluon MHV amplitude
ε-2

ε-1

ε0

100

101

102

103

104

-15 -10 -5 0

N
um

be
r

of
 e

ve
nt

s

Accuracy

12 gluon MHV amplitude
ε-2

ε-1

ε0

Figure 3: Accuracy for the1
ε2 -pole, 1

ε -pole and the finite part.

23

tions. We also observed that asking for an accuracy of−4 will actually double the fraction of
bad points. This would mean that for the 12 gluon case, for example, about 6 % of the events
need to be reevaluated with higher accuracy. In Fig. 4 we showthe average accuracy evaluated
for a fixed number of phase space points. The accuracy is evaluated using the scale test. As we
can see the accuracy is a linearly raising function of the number of gluons. Starting atn = 4
with an average accuracy of about 12 digits, the accuracy reaches−4 for about 14 gluons. For
14 gluons we have thus on average only 3−4 digits which are significant. To estimate whether
the program can still be run mostly with built-in double precision in addition to the average
accuracy the width of the distribution is important. The width is illustrated as a blue band. We
observe in Fig. 4 that the width increases as a function of thenumber of gluons. However, the
effect is only moderate in size. Assuming that for most LHC applications 4 significant digits
should be sufficient we can conclude from Fig. 4 that up to 12–14 gluons the program may be
used with only a small fraction of points requiring a recalculation using extended precision.

-14

-12

-10

-8

-6

-4

-2

 0

 4 6 8 10 12 14 16

lo
g(

m
ea

n
ac

cu
ra

cy
)

number of gluons

Average accuracy vs number of gluons

Figure 4: The average accuracy as estimated from the scale test as function of the number of
gluons. The band gives a measure for the width of the distribution

One may ask the question how much the findings on the accuracy shown before depend on the
specific helicity configuration. In Fig. 5 we show a similar plot as discussed before but now
for the NMHV configuration. We observe that leading 1/ε2 singularity is changed compared
to what we have seen before. Since the pole part is known analytically this has no practical
consequences. Inspecting the accuracy of the1

ε pole as well as the accuracy of the finite part
we observe a behaviour similar to what has been shown in Fig. 3. In Fig. 6 we show the accu-

24

100

101

102

103

104

105

-15 -10 -5 0

N
um

be
r

of
 e

ve
nt

s

Accuracy

6 gluon NMHV amplitude

ε-2

ε-1

ε0

Figure 5: Accuracy for a NMHV amplitude for 6 gluons.

100

101

102

103

104

105

-15 -10 -5 0

N
um

be
r

of
 e

ve
nt

s

Accuracy

Accuracy of the rational part

+ + + + + + helicity
− + + + + + helicity
− − + + + + helicity
− + − + − + helicity

Figure 6: Accuracy of the rational part for the 6 gluon amplitude for different helicity
configurations.

25

racy of the rational part for different helicity configurations. Apart from minor differences at
the right end of the histograms — which may be due to statistical fluctuations — we observe
that the behaviour is largely independent from the chosen helicity configuration. To good
approximation we thus believe that our findings are to large extend universal.

5.2. Estimated speed

10-1

100

101

102

103

104

 4 6 8 10 12 14 16 18 20

tim
e

[m
s]

number of gluons

Run Time vs number of gluons

Double precision
 unreliable for n>14

run time (fixed helicity)
fit to f(n) ∝ n6 ms

run time (averaged helicity)

Figure 7: Runtime in milli seconds for the evaluation of one phase space point. The red crosses
show the runtime for the helicity configuration which we consider the worst case.
For a comparison we also show for low multiplicities an average over all possible
helicity configurations (blue crosses).

In Fig. 7 we show the runtime in milli seconds required to evaluate one phase space point.
The values were obtained by averaging over several evaluations to avoid large fluctuations.
As hardware we used an Intel Quad Core CPU (Q9650) with a frequency of 3 GHz. As an
operating system we used Scientific Linux Version 5.2. The program has been compiled with
the GNU compiler suite version 4.1. The red crosses show the runtime for the evaluation
of (−+)n/2 amplitudes. In principle, the runtime can depend on the helicity configuration
since for specific cases some of the Born amplitudes enteringthe calculation may vanish. The

26

helicity configuration shown here should correspond to the worst case. For low multiplicities
we have also checked the runtime by averaging over all possible helicity configurations. We
find indeed that the average runtime obtained in this way are smaller than the ones measured
for the(−+)n/2 amplitudes. Since with increasing multiplicity the numberof different helicity
configurations becomes quite large, we have restricted thisanalysis ton≤ 8. Investigating the
asymptotic behaviour of our implementation we observe thatthe runtime behaves asn6 where
n is the number of gluons. This is illustrated in Fig. 7 by the solid green line. Note that the
regionn > 14 is shown for illustrative purpose only. In this region thenumerical accuracy
is so bad that a significant fraction of phase space points would require a re-evaluation using
extended floating point arithmetic. The data used in Fig. 7 can be obtained by running the
programNGluon-demo with the option--runtime. We believe that further improvements
are possible. In particularNGluon is based on the evaluation of tree amplitudes using the
Berends-Giele recursion [49]. In the implementation of thetree amplitudes we have not used
the fact that we are working in the helicity basis. This couldgive a further improvement. We
stress that in our code no use of explicit analytic formulae for specific helicity configurations
is made. This could give a further improvement.

6. Conclusions

We have presented a purely numerical implementation of one-loop n-gluon amplitudes. The
implementation makes use of the generalised unitarity method developed recently by various
groups. We have performed extensive checks on the numericalaccuracy as well as the perfor-
mance with respect to the computing time. The program has passed all these checks, is easy
to use and shows a good behaviour with respect to the evaluation speed. We believe that the
program can be used to obtain reliable predictions for the LHC. To the best of our knowledge
the program is the only available public code which allows the numerical evaluation of arbi-
trary n-gluon one-loop amplitudes without requiring additional external input. Apart from the
physical application, the package may serve as a reference implementation for future develop-
ments. In particular, it should be straightforward to extend to full QCD processes. The trivial
extension to include also fermionic loops is foreseen for a future release.

Acknowledgments

We would like thank Pierpaolo Mastrolia and Francesco Tramontano for illuminating discus-
sions. We are also grateful to Valery Yundin for advice and testing of the code. This work is
supported in part by the Deutsche Forschungsgemeinschaft through the Transregional Collab-
orative Research Centre SFB-TR9 “Computational Particle Physics”and the Research Train-
ing Group (GK1504) "Mass, Spectrum, Symmetry, Particle Physics in the Era of the Large
Hadron Collider" GK1504. In addition we acknowledge support from the Helmholtz Alliance
“Physics at the Terascale”contract VH-HA-101. The work of SB has been supported in part
by Danish Natural Science Reseach Council grant 10-084954.

27

A. Sample output

A.1. Comparison with Giele, Zanderighi

Running the sample applicationNGluon-demo with the option--GZcheck should produce
output similar to what is listed below:

INTEGRALS: FF [1] and QCDLoop [2] are used to calculate the
INTEGRALS: scalar one-loop integrals
INTEGRALS: [1] van Oldenborgh: FF: A Package To Evaluate One Loop Feynman Diagrams
INTEGRALS: Comput.Phys.Commun.66:1-15,1991
INTEGRALS: [2] R.Keith Ellis, Giulia Zanderighi, Scalar one-loop integrals for QCD,
INTEGRALS: JHEP 0802:002,2008

Numerical comparison with values published in:
Giele,Zanderighi:
On the Numerical Evaluation of One-Loop Amplitudes:
The Gluonic Case.
JHEP 0806:038,2008.

#Number of gluons = 6

ONELOOP: Renormalization scale set to mu = 3.600000000000000e+01
Helicities: ++++++
tree : 2.449772238656663e-15
tree (GZ) : 0.000000000000000e+00
|Aeps2| : 0.000000000000000e+00
|Aeps2| (GZ) : 0.000000000000000e+00
|Aeps1| : 0.000000000000000e+00
|Aeps1| (GZ) : 0.000000000000000e+00
|Afinite| : 5.298064836614244e-01
|Afinite|(GZ) : 5.298064836438550e-01
Helicities: -+++++
tree : 4.452705681580742e-14
tree (GZ) : 0.000000000000000e+00
|Aeps2| : 7.016762080329839e-13
|Aeps2| (GZ) : 0.000000000000000e+00
|Aeps1| : 7.119361750603557e-12
|Aeps1| (GZ) : 0.000000000000000e+00
|Afinite| : 3.259967054240548e+00

28

|Afinite|(GZ) : 3.259967054272360e+00
Helicities: --++++
tree : 2.849128165044318e+01
tree (GZ) : 2.849128165044320e+01
|Aeps2| : 1.709476899026886e+02
|Aeps2| (GZ) : 1.709476899026590e+02
|Aeps1| : 6.145908783806966e+02
|Aeps1| (GZ) : 6.145908783763970e+02
|Afinite| : 1.373747535025069e+03
|Afinite|(GZ) : 1.373747535008280e+03
Helicities: -+-+-+
tree : 3.138715395008066e+00
tree (GZ) : 3.138715395008080e+00
|Aeps2| : 1.883229237005350e+01
|Aeps2| (GZ) : 1.883229237004850e+01
|Aeps1| : 6.770582929013867e+01
|Aeps1| (GZ) : 6.770582928695769e+01
|Afinite| : 1.510439503524497e+02
|Afinite|(GZ) : 1.510439503379470e+02
Helicities: +-+-+-
tree : 3.138715395008066e+00
tree (GZ) : 3.138715395008080e+00
|Aeps2| : 1.883229237005516e+01
|Aeps2| (GZ) : 1.883229237004850e+01
|Aeps1| : 6.770582928536295e+01
|Aeps1| (GZ) : 6.770582928695769e+01
|Afinite| : 1.537801016025857e+02
|Afinite|(GZ) : 1.537801014159860e+02

#Number of gluons = 7

ONELOOP: Renormalization scale set to mu = 4.900000000000000e+01
Helicities: +++++++
tree : 1.164850097354693e-15
tree (GZ) : 0.000000000000000e+00
|Aeps2| : 0.000000000000000e+00
|Aeps2| (GZ) : 0.000000000000000e+00
|Aeps1| : 0.000000000000000e+00
|Aeps1| (GZ) : 0.000000000000000e+00
|Afinite| : 3.101695333690422e-01
|Afinite|(GZ) : 3.101695334831830e-01
Helicities: -++++++
tree : 1.414070990000164e-15
tree (GZ) : 0.000000000000000e+00
|Aeps2| : 2.393016434615393e-14
|Aeps2| (GZ) : 0.000000000000000e+00

29

|Aeps1| : 1.074107565329303e-13
|Aeps1| (GZ) : 0.000000000000000e+00
|Afinite| : 1.920528150920153e-01
|Afinite|(GZ) : 1.920528147653950e-01
Helicities: --+++++
tree : 2.106612834594481e+00
tree (GZ) : 2.106612834594490e+00
|Aeps2| : 1.474628984216144e+01
|Aeps2| (GZ) : 1.474628984216140e+01
|Aeps1| : 4.850089396312033e+01
|Aeps1| (GZ) : 4.850089396312130e+01
|Afinite| : 8.731521551316330e+01
|Afinite|(GZ) : 8.731521551386510e+01
Helicities: -+-+-+-
tree : 1.101865680944418e-01
tree (GZ) : 1.101865680944420e-01
|Aeps2| : 7.713059766611572e-01
|Aeps2| (GZ) : 7.713059766610950e-01
|Aeps1| : 2.536843489960513e+00
|Aeps1| (GZ) : 2.536843489960750e+00
|Afinite| : 5.933610502627595e+00
|Afinite|(GZ) : 5.933610502945470e+00
Helicities: +-+-+-+
tree : 1.101865680944418e-01
tree (GZ) : 1.101865680944420e-01
|Aeps2| : 7.713059766609913e-01
|Aeps2| (GZ) : 7.713059766610950e-01
|Aeps1| : 2.536843489960436e+00
|Aeps1| (GZ) : 2.536843489960750e+00
|Afinite| : 6.042012410247624e+00
|Afinite|(GZ) : 6.042012409916140e+00
...

The lines marked with (GZ) correspond to the results as takenfrom Ref. [22].

A.2. Comparison with Giele, Kunszt, Melnikov

Running the sample program with option--GKMcheck should produce results similar to what is listed
below:

INTEGRALS: FF [1] and QCDLoop [2] are used to calculate the
INTEGRALS: scalar one-loop integrals
INTEGRALS: [1] van Oldenborgh: FF: A Package To Evaluate One Loop Feynman Diagrams
INTEGRALS: Comput.Phys.Commun.66:1-15,1991
INTEGRALS: [2] R.Keith Ellis, Giulia Zanderighi, Scalar one-loop integrals for QCD,

30

INTEGRALS: JHEP 0802:002,2008

Cross checking results of GKM [arXiv:0801.2237]

4-point helicity amplitudes

Helicities: ++++
amp : 3.33333333e-01
amp(GKM) : 3.33330000e-01
Helicities: -+++
amp : 7.50000000e-01
amp(GKM) : 7.50000000e-01
Helicities: --++
amp : 2.75849329e+00
amp(GKM) : 2.75849000e+00
IR-pole : 4.89407794e+00
IR-pole(ana) : 4.89407794e+00
Helicities: -+-+
amp : 4.17948712e+00
amp(GKM) : 4.17948834e+00
IR-pole : 4.89407794e+00
IR-pole(ana) : 4.89407794e+00

5-point helicity amplitudes

Helicities: +++++
amp : 6.61487185e-01
amp(GKM) : 6.61484296e-01
Helicities: -++++
amp : 8.40420360e-01
amp(GKM) : 8.40440985e-01
Helicities: --+++
amp : 9.41625089e+00
amp(GKM) : 8.39210351e+00
IR-pole : 7.35468951e+00
IR-pole(ana) : 7.35468951e+00
amp(++---) 8.39210347e+00
Helicities: -+-++
amp : 7.06950047e+00
amp(GKM) : 8.06284942e+00
IR-pole : 7.35468951e+00
IR-pole(ana) : 7.35468951e+00
amp(+-+--) 8.06284951e+00

31

6-point helicity amplitudes

Helicities: ++++++
amp : 5.29806483e-01
amp(GKM) : 5.29806465e-01
Helicities: -+++++
amp : 3.25996705e+00
amp(GKM) : 3.25996706e+00
Helicities: --++++
amp : 9.73370506e+00
amp(GKM) : 9.73370449e+00
IR-pole : 2.03178718e+00
IR-pole(ana) : 2.03178718e+00
Helicities: -+-+++
amp : 9.28315860e+00
amp(GKM) : 9.28315867e+00
IR-pole : 2.03178718e+00
IR-pole(ana) : 2.03178718e+00
Helicities: -++-++
amp : 1.34373214e+01
amp(GKM) : 1.34373207e+01
IR-pole : 2.03178718e+00
IR-pole(ana) : 2.03178718e+00
Helicities: ---+++
amp : 1.78047530e+01
amp(GKM) : 1.78047526e+01
IR-pole : 2.03178718e+00
IR-pole(ana) : 2.03178718e+00
Helicities: --+-++
amp : 1.23425461e+01
amp(GKM) : 1.23425455e+01
IR-pole : 2.03178718e+00
IR-pole(ana) : 2.03178718e+00
Helicities: -+-+-+
amp : 1.48181613e+01
amp(GKM) : 1.48181614e+01
IR-pole : 2.03178718e+00
IR-pole(ana) : 2.03178718e+00

all checks with IR/UV poles and JHEP 0806:038,2008 passed.

32

Time used for this run: 4.00020000e-02

We note that for the helicity configurations−−+ + + and−+−+ + we disagree with Ref. [17].
However, we observed that switching to++−−− and+−+−− we find agreement.

33

References

[1] A. Bredenstein, A. Denner, S. Dittmaier, and S. Pozzorini, Phys.Rev.Lett.103, 012002 (2009),
arXiv:arXiv:0905.0110.

[2] S. Dittmaier, S. Kallweit, and P. Uwer, Phys.Rev.Lett.100, 062003 (2008), arXiv:arXiv:0710.1577.

[3] S. Dittmaier, P. Uwer, and S. Weinzierl, Phys.Rev.Lett.98, 262002 (2007), arXiv:hep-ph/0703120.

[4] SM and NLO Multileg Working Group, J. Andersenet al., (2010), arXiv:1003.1241.

[5] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, Nucl.Phys.B425, 217 (1994), arXiv:hep-
ph/9403226.

[6] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, Nucl.Phys.B435, 59 (1995), arXiv:hep-
ph/9409265.

[7] R. Britto, F. Cachazo, and B. Feng, Nucl. Phys.B725, 275 (2005), arXiv:hep-th/0412103.

[8] G. Ossola, C. G. Papadopoulos, and R. Pittau, Nucl. Phys.B763, 147 (2007), arXiv:hep-ph/0609007.

[9] D. Forde, Phys. Rev.D75, 125019 (2007), arXiv:0704.1835.

[10] Z. Bern, L. J. Dixon, and D. A. Kosower, Phys.Rev.D71, 105013 (2005), arXiv:hep-th/0501240.

[11] Z. Bern, L. J. Dixon, and D. A. Kosower, Phys.Rev.D72, 125003 (2005), arXiv:hep-ph/0505055.

[12] Z. Bern, L. J. Dixon, and D. A. Kosower, Phys.Rev.D73, 065013 (2006), arXiv:hep-ph/0507005.

[13] C. F. Berger, Z. Bern, L. J. Dixon, D. Forde, and D. A. Kosower, Phys.Rev.D74, 036009 (2006), arXiv:hep-
ph/0604195.

[14] C. F. Berger, Z. Bern, L. J. Dixon, D. Forde, and D. A. Kosower, Phys.Rev.D75, 016006 (2007), arXiv:hep-
ph/0607014.

[15] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, and P. Mastrolia, Phys. Lett.B645, 213 (2007), arXiv:hep-
ph/0609191.

[16] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt, and P. Mastrolia, JHEP03, 111 (2007), arXiv:hep-
ph/0612277.

[17] W. T. Giele, Z. Kunszt, and K. Melnikov, JHEP04, 049 (2008), arXiv:0801.2237.

[18] G. Ossola, C. G. Papadopoulos, and R. Pittau, JHEP05, 004 (2008), arXiv:0802.1876.

[19] S. D. Badger, JHEP01, 049 (2009), arXiv:0806.4600.

[20] R. K. Ellis, W. T. Giele, and Z. Kunszt, JHEP03, 003 (2008), arXiv:0708.2398.

[21] C. F. Bergeret al., Phys. Rev.D78, 036003 (2008), arXiv:0803.4180.

[22] W. Giele and G. Zanderighi, JHEP0806, 038 (2008), arXiv:arXiv:0805.2152.

[23] W. Giele, Z. Kunszt, and J. Winter, (2009), arXiv:0911.1962.

[24] A. Lazopoulos, (2008), arXiv:arXiv:0812.2998.

[25] A. Lazopoulos, (2009), arXiv:arXiv:0911.5241.

[26] C. F. Bergeret al., Phys. Rev.D80, 074036 (2009), arXiv:0907.1984.

[27] C. F. Bergeret al., Phys. Rev. Lett.102, 222001 (2009), arXiv:0902.2760.

[28] C. F. Bergeret al., (2010), arXiv:1004.1659.

[29] C. Bergeret al., (2010), arXiv:arXiv:1009.2338, * Temporary entry *.

[30] T. Melia, K. Melnikov, R. Rontsch, and G. Zanderighi, (2010), arXiv:arXiv:1007.5313.

[31] K. Melnikov and M. Schulze, Nucl.Phys.B840, 129 (2010), arXiv:arXiv:1004.3284.

[32] K. Melnikov and G. Zanderighi, Phys.Rev.D81, 074025 (2010), arXiv:arXiv:0910.3671.

[33] K. Melnikov and M. Schulze, JHEP0908, 049 (2009), arXiv:arXiv:0907.3090.

[34] R. Ellis, K. Melnikov, and G. Zanderighi, JHEP0904, 077 (2009), arXiv:arXiv:0901.4101.

[35] G. Bevilacqua, M. Czakon, C. Papadopoulos, and M. Worek, Phys.Rev.Lett.104, 162002 (2010),
arXiv:arXiv:1002.4009.

[36] G. Bevilacqua, M. Czakon, C. Papadopoulos, R. Pittau, and M. Worek, JHEP0909, 109 (2009),
arXiv:arXiv:0907.4723.

[37] G. Ossola, C. G. Papadopoulos, and R. Pittau, JHEP03, 042 (2008), arXiv:0711.3596.

[38] P. Mastrolia, G. Ossola, T. Reiter, and F. Tramontano, JHEP1008, 080 (2010), arXiv:arXiv:1006.0710.

[39] G. ’t Hooft and M. Veltman, Nucl.Phys.B153, 365 (1979).

[40] A. Denner, U. Nierste, and R. Scharf, Nucl.Phys.B367, 637 (1991), Dedicated to M. Veltman on occasion
of his 60th birthday.

[41] Z. Bern, L. J. Dixon, and D. A. Kosower, Nucl.Phys.B412, 751 (1994), arXiv:hep-ph/9306240.

[42] R. K. Ellis and G. Zanderighi, JHEP02, 002 (2008), arXiv:0712.1851.

[43] G. van Oldenborgh and J. Vermaseren, Z.Phys.C46, 425 (1990).

[44] R. K. Ellis, W. T. Giele, Z. Kunszt, K. Melnikov, and G. Zanderighi, JHEP01, 012 (2009),
arXiv:0810.2762.

[45] T. Hahn and M. Perez-Victoria, Comput.Phys.Commun.118, 153 (1999), arXiv:hep-ph/9807565.

[46] A. van Hameren, (2010), arXiv:arXiv:1007.4716.

[47] C. F. Berger and D. Forde, Ann.Rev.Nucl.Part.Sci. (2009), arXiv:arXiv:0912.3534.

[48] W. Giele and E. Glover, Phys.Rev.D46, 1980 (1992).

[49] F. A. Berends and W. Giele, Nucl.Phys.B306, 759 (1988).

[50] W. L. van Neerven and J. A. M. Vermaseren, Phys. Lett.B137, 241 (1984).

[51] G. Ossola, C. G. Papadopoulos, and R. Pittau, JHEP07, 085 (2007), arXiv:0704.1271.

[52] F. del Aguila and R. Pittau, JHEP07, 017 (2004), arXiv:hep-ph/0404120.

[53] Z. Bern, L. J. Dixon, D. C. Dunbar, and D. A. Kosower, Phys. Lett. B394, 105 (1997), arXiv:hep-
th/9611127.

[54] Y. Hida, X. S. Li, and D. H. Bailey, Library for Double-Double and Quad-Double Arithmetic,
http://crd.lbl.gov/̆02dcdhbailey/mpdist, report LBNL-46996, 2008.

35

[55] G. Mahlon, Phys.Rev.D49, 4438 (1994), arXiv:hep-ph/9312276.

[56] D. Forde and D. A. Kosower, Phys.Rev.D73, 061701 (2006), arXiv:hep-ph/0509358.

36

