
ICE — the IBP Chooser of Equations

Philipp Kant
Humboldt-Universität zu Berlin, Institut für Physik,

Newtonstraße 15, 12489 Berlin

September 30, 2013

This is the manual of ICE, a program to choose a maximal linearly independent subset
from a given set of Integration-by-Parts and/or Lorentz Invariance equations. The algorithm
it implements is described in [1], which is also the reference that should be cited when ICE is
used in a calculation leading to a scientiVc publication.

1 Installation

The easiest way to compile the program from source is to use the cabal build system. It
is included in the Haskell Platform1, which is available on most modern systems, including
GNU/Linux, Windows, and OS/X. If you have the Haskell Platform installed, the following
commands, executed from the source directory, will install all needed libraries and compile
the program

cabal install --only-dependencies
cabal configure
cabal build

This will create the executable Vle ./dist/build/ice/ice.

2 Usage

ICE is run as

ice [OPTIONS] [FILE]

where the following options are available:

-d --dumpfile=FILE In addition to the output on stdout, print a list of newline-separated
equation numbers to FILE. Note that the equations are zero-indexed.

1//www.haskell.org/platform/

1



--intname=NAME This is used to control the name of the function representing integrals in
the input Vle. The default is Int.

-i --invariants=x Add the symbol x to the list of variables that appear in the polynomials.

--sortList Sort the list of linearly independent equations. Otherwise, prints a permutation
that brings the matrix as close to upper triangular form as possible.

-b --backsub After forward elimination, perform backward elimination in order to deter-
mine which master integrals appear in the result for each integral.

-r --rmax=n, -s --smax=n Only relevant if --backsub is given. Do not try to Vnd a rep-
resentation for integrals with more than rmax dots or more than smax scalar products.
A system of IBP equations will typically contain some integrals with many dots and/or
scalar products (more than the integrals used as seeds in the generation of the system)
that can not be determined by the system, but are not master integrals and could be
reduced if the system was enlarged. Discarding those before the backward elimination
saves some time.

-? --help Display help message

-V --version Print version information

The input Vle FILE should have the following syntax:

• Each line gives one term in an equation in the form
Int[<indices>]*(<sum of terms>)
The brackets are mandatory.

• Each term consits of

– a sign, + or -. If the Vrst term is positive, its sign can be omitted.

– a (positive) integer coeXcient. If the coeXcient is one, this can be omitted.

– a multiplication operator * (unless the integer coeXcient is omitted), followed by
one of the strings deVned as an invariant using the -i option, possibly followed by
^ and a positive exponent. This can be repeated, separated by the multiplication
operator *.

• Equations are terminated and separated by a line consisting of only a semicolon.

For an example, see the following section.

3 Example: One-Loop Massive Self-Energy

In order to illustrate the usage of the program, we give a simple example input Vle for the
reduction of the diagram shown in Figure 1. The input Vle with the equations is found in
example/se1l.in. It contains equations to reduce one scalar product and one dot, with
invariants d and m. The command line to run ICE on this Vle is

2



Figure 1: One-Loop massive self-energy

./dist/build/ice/ice -id -im example/se1l.in

or

./dist/build/ice/ice -id -im -r1 -s1 --backsub example/se1l.in

In the latter case, ICE also determines which master integrals are needed to express each
integral with at most one dot and/or one scalar product. The output will look similar to

ICE -- Integration-By-Parts Chooser of Equations
Command line arguments: Config {inputFile = "example/se1l.in"
, dumpFile = "", intName = "Int", intNumbers = False
, invariants = ["d","m"], rMax = 1, sMax = 1, backsub = True}
Number of equations: 8
Number of integrals: 8
Number of integrals within r=1, s=1: 4
Probing for p = 3036999841
Random points: [2181539769,2267241561]
Number of linearly independent equations: 7
Indices of linearly independent equations (starting at 0):
5
4
6
1
0
2
3
Integrals that can be reduced with these equations:
Int[2,-1]
Int[2,0]
Int[1,-1]
Possible Master Integrals:
Int[1,0]
Performing backward elimination.
Final representations of the integrals will look like:
Int[2,-1] -> {Int[1,0]}
Int[2,0] -> {Int[1,0]}
Int[1,-1] -> {Int[1,0]}

3



The probability that too many equations were discarded
is less than 9.219625063394687e-9

Timings:
Parsing and preparing equations: 0.000284s
Solving Equations: 0.000263s

First, ICE reports the values of the command line arguments given. Next, the number of
equations and integrals, as well as the number of integrals that lie within the region given by
the values of rmax and smax is listed.
After that, the actual algorithm starts. The prime number and evaluation point is given,

followed by the number of linearly independent equations and their positions in the input Vle
(starting with zero). This is the main information of interest for a subsequent run of Laporta’s
Algorithm. With the option --dumpfile, it is possible to write this list to a separate Vle.
Finally, we get information on which integrals were reduced and which are considered mas-

ter integrals. In case the --backsub option is given, ICE also gives a lists of which master
integrals appear in the expression for each integral that could be reduced.

4 Details on the Implementation

Internally, a run of ICE consists of the following steps:

• Parsing of the input Vle

• Ordering of the integrals and bringing the system to matrix form

• Processing the matrix with the algorithm of [1]

• Optionally, performing backward elimination in order to determine which master inte-
grals are needed to express each integral

In the following, we give some remarks about each step.

4.1 Parsing of the Input File

The syntax of the input Vle has been described above, and an example is distributed along with
ICE. As ICE will typically be used on large problems in an automated toolchain, the parser has
been designed for speed, not for helpful error messages. In particular, unless all invariants
appearing in the equations are declared via the -i command line option, the program will
crash.

4.2 Ordering of the Integrals

In order to express complicated integrals in terms of easier ones, we perform an ordering on
the integrals, in decreasing order, following [2]. By inserting the integrals into a binary search
tree, we assign a number to each integral. This number corresponds to the column number in
the matrix.

4



The ordering determines which integrals are considered master integrals by ICE. Should
one wish to change it (for instance, to prefer scalar products over dots in the master integrals),
the deVnition of the ordering is found in ./Ice/Types.hs and can easily be modiVed.

4.3 Main Algorithm

The prime p deVning the Veld Fp, and the evaluation point, is chosen randomly. For eX-
ciency, the program contains a list of 100 pre-calculated large prime numbers. Large in this
context means that they are as large as possible under the constraint that their square can be
represented as a 64bit integer.
For a detailed description of the main algorithm, see [1].

4.4 Optional Backward Elimination

Sometimes, it can be desirable to know which master integrals appear in the expression for
a certain integral (for example, one could drop certain coeXcients known to be zero at an
earlier stage of the reduction). This knowledge is easily obtained by performing a backward
elimination and noting which entries of the resulting matrix are non-zero. Ice performs this
step if the command line argument --backsub is provided.
In a given system of IBP identities, there will be some integrals with more dots and/or scalar

products than in the integrals used to generate the system. Some of these integrals can not be
reduced to master integrals without enlarging the system, so ICE will drop (after the forward
elimination) any equations that still contain integrals with more dots (scalar products) than
allowed by the option --rmax (--smax).

References

[1] Philipp Kant. Finding Linear Dependencies in Integration-By-Parts Equations: A Monte
Carlo Approach. 2013, 1309.7287.

[2] S. Laporta. High precision calculation of multiloop Feynman integrals by diUerence equa-
tions. Int.J.Mod.Phys., A15:5087–5159, 2000, hep-ph/0102033.

5


	Installation
	Usage
	Example: One-Loop Massive Self-Energy
	Details on the Implementation
	Parsing of the Input File
	Ordering of the Integrals
	Main Algorithm
	Optional Backward Elimination


