Colloquium Announcement
of the Collaborative Research Centre 951
“Hybrid Inorganic/Organic Systems for Opto-Electronics”

Hrvoje Petek
Department of Physics and Astronomy, University of Pittsburgh, USA

Nonlinear plasmonnic photoemission

Caterina Cocchi
Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Germany
Institut für Physik, Carl von Ossietzky Universität Oldenburg, Germany

Ultrafast electron and vibrational dynamics
in hybrid materials from first principles

Time: Thursday, 12.11.2020, 15:15
Place: The colloquium takes place online (ZOOM)
Meeting-ID: 687 6163 8786
Password: 951951

Collaborative Research Centre 951
Department of Physics
Humboldt-Universität zu Berlin
Email: sfb951@physik.hu-berlin.de
Tel.: +49 30 2093 66380
www.physik.hu-berlin.de/sfb951
Nonlinear plasmonic photoemission

Hrvoje Petek

Department of Physics and Astronomy, University of Pittsburgh, USA

petek@pitt.edu
http://www.ultrafast.phyast.pitt.edu/

We examine the nonlinear photoemission response of silver single crystal surfaces as the photon energy is tuned through the epsilon near zero (ENZ), \(\varepsilon \sim 0 \), condition, where \(\varepsilon \) is the bulk dielectric function. At ENZ, the free electron response can no longer screen the optical field, which can penetrate a metal as a longitudinal bulk plasmon field, \(\omega_p \). By recording two-photon photoemission (2PP) spectra, we find that ENZ is the onset of a plasmonic photoemission process, which is non-Einsteinian in nature, because the photoelectron energy does not depend on \(\omega_L \), but rather on the internal \(\omega_p \). Moreover, we find that a tangential optical field can excite the plasmon response on account of an atomic scale surface corrugation. The collective longitudinal plasmonic response is detected as a peak in single particle photoelectron spectra because the plasmon decay preferentially excites electrons from the Fermi level, \(E_F \), rather than decaying evenly according to density of states into a distribution of hot electrons and holes spanning \(E_F - \omega_p \leftrightarrow E_F + \omega_p \). The preferential excitation of electrons from \(E_F \) has been predicted and attributed to time dependent screening in 1965 by Hopfield,\(^1\) and observed for silver by Horn and coworkers,\(^2\) but it challenges the diametric consensus in the plasmonic photocatalysis community that plasmon decay distributes energy democratically to single particle products. The observed plasmon decay process therefore offers a more optimistic energy transduction in plasmonic photocatalysis.

Ultrafast electron and vibrational dynamics in hybrid materials from first principles

Caterina Cocchi

_Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, Germany
Institut für Physik, Carl von Ossietzky Universität Oldenburg, Germany_

Understanding the dynamics of coupled electron-vibrational states in their natural sub-picosecond time scale is essential to gain insight into the fundamental processes that rule the response of materials to an ultrafast laser pulse. Real-time time-dependent density functional theory, in conjunction with Ehrenfest molecular dynamics, is becoming a popular methodology to investigate these phenomena on the nanoscale. I will demonstrate the capabilities of this approach [1] with the example of a prototypical hybrid interface formed by a hydrogenated Si nanocluster and a p-dopant molecule adsorbed thereon [2]. To investigate the charge-transfer dynamics in hybrid materials formed by transition metal dichalcogenide (TMDC) monolayers and C-conjugated molecules, the level alignment plays a crucial role. I will show that this quantity varies significantly with the density of the adsorbed molecules and with the composition of the TMDC, leading to different physical scenarios. Finally, I will outline our recent developments to account for screening effects of layered substrates implicitly in our calculations [3].