Ultrafast electron dynamics at interfaces

Katrin R. Siefermann

Leibniz Institute of Surface Modification (IOM), Leipzig

Charge transfer processes across hybrid interfaces, such as formed by the connection of molecules to semiconductors, play an increasingly important role in a variety of emerging technologies. Detailed understanding of interfacial charge transfer in these systems, however, remains a major challenge for experiments and theory. In my talk I will present a new approach to monitor photo-induced electron transfer from a molecule to a semiconductor material with sub-picosecond temporal resolution and from the perspective of well-defined atomic sites [1]. Combining femtosecond time-resolved X-ray photoelectron spectroscopy with constrained density functional theory, we are able to identify the nature of an intermediate electronic state that precedes free charge carrier generation in a film of dye-sensitized ZnO nanocrystals after photoexcitation of the dye with visible light. The findings demonstrate a new capability to monitor charge transfer in complex hybrid materials. This presentation will further include our latest results of electron dynamics at interfaces.

[1] K. R. Siefermann, C. D. Pemmaraju, S. Neppl, A. Shavorskiy, et al., J. Phys. Chem. Lett. 5, 2753-2759 (2014).

Theory of transfer processes in nano-hybrid systems

Volkhard May

Department of Physics, Humboldt-Universität zu Berlin

The talk reviews recent work on photoinduced processes in hybrid systems formed by metal nano-particles, supramolecular systems, and semiconductor nano-crystals. In a first part a brief overview is given on metal nano-particle induced transient enhancement effects on molecular emission spectra [1,2]. Work related to a nano-laser is emphasized [3]. Then, studies are presented on excitation energy transfer among semiconductor nano-crystals and single molecules [4] as well as molecular aggregates [5,6]. Finally, current computations on metal-core semiconductor-shell systems are presented. The talk is closed with an outlook on planned work.

References

[1] Y. Zhang, Y. Zelinskyy, and V. May, J. Nanophot. 6, 063533 (2012).

[2] G. Kyas, Y. Zelinskyy, Y. Zhang, and V. May, Ann. Phys. (Berlin), 525, 189 (2013), special issue "Ultrafast Phenomena at the Nanoscale".

[3] Y. Zhang and V. May, J. Chem. Phys. (in press).

[4] D. Ziemann and V. May, J. Phys. Chem. Lett. 5, 1203 (2014).

[5] J. Megow, M. Röhr, M. Schmidt am Busch, Th. Renger, R. Mitric, S. Kirstein, J. Rabe, and V. May, Phys. Chem. Chem. Phys. 17, 6741 (2015).

[6] T. Plehn, D. Ziemann, J. Megow and V. May, J. Chem. Phys. B, John R. Miller and Marshall D. Newton Festschrift, DOI: 10.1021/jp5111696.