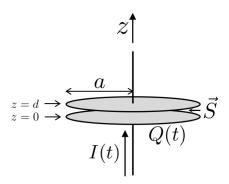

Experimental physik 2 [PK2]

Humboldt-Universität zu Berlin, Sommersemester 2017 Prof. Dr. S. Kowarik

Blatt 11

Abgabe: 6. Juli 2017 bis 13:00 Uhr (Kasten vor NEW 15 1'415)


Aufgabe 1: Verschiebungsstrom (30%)

Ein Kondensator besitzt quadratische Platten der Seitenlänge a=1 m. Zum Zeitpunkt t beträgt der Ladestrom I(t)=2 A. Das elektrische Feld $\vec{E}(t)$ zwischen den Platten ist homogen; Randeffekte sind zu vernachlässigen.

- a) Berechnen Sie den Verschiebungsstrom $I_{V}(t)$ zwischen den Platten.
- b) Berechnen Sie dE/dt zwischen den Platten zum Zeitpunkt t.
- c) Berechnen Sie den Verschiebungsstrom $\tilde{I}_{\rm V}(t)$, der durch ein gedachtes Quadrat der Seitenlänge $b=0.5\,\mathrm{m}$ im Zentrum zwischen den Platten fließt.
- d) Berechnen Sie $\oint \vec{B} \, d\vec{s}$ für den Rand des gedachten Quadrats im gezeichneten Umlaufsinn. Der Ladestrom I(t) fließe dabei aus der Zeichenebene heraus.

Aufgabe 2: Poynting-Vektor (30%)

Ein Kondensator besitzt kreisförmige Platten mit Radius a und Abstand d. Die z-Achse zeige wie skizziert senkrecht zu den Platten. Der Ladestrom sei mit I(t), die Ladung des Kondensators mit Q(t) bezeichnet. Das elektrische Feld $\vec{E}(t)$ zwischen den Platten $(0 < z < d, 0 \le r_{\perp} \le a)$ ist homogen; Randeffekte sind zu vernachlässigen.

a) Drücken Sie $\vec{E}(t)$ durch Q(t) aus.

- b) Aus Symmetriegründen muss für das Magnetfeld \vec{B} gelten: $\vec{B} = B(r_{\perp}, z, t) \vec{e}_{\varphi}$. Drücken Sie $B(r_{\perp}, z, t)$ für 0 < z < d durch I(t) und Q(t) aus. Unterscheiden Sie die Fälle $r_{\perp} \leq a$ und $r_{\perp} > a$.
- c) Berechnen Sie den Poynting-Vektor \vec{S} am "Rand" des E-Feldes des Kondensators, d. h. für 0 < z < d und $r_{\perp} = a$, unter Verwendung der Resultate von a) und b).
- d) \dot{W} sei die pro Zeiteinheit zwischen die Kondensatorplatten gestrahlte elektromagnetische Energie. Berechnen Sie diese mit dem Ergebnis von c).
- e) $W_C(t) = \frac{1}{2}CU(t)^2$ sei die im Kondensator gespeicherte elektrische Energie. Berechnen Sie deren zeitliche Änderung \dot{W}_C und vergleichen Sie diese mit dem Ergebnis von d).

Aufgabe 3: Ebene Welle (20%)

Für eine ebene elektromagnetische Welle gelte

$$E_x = 0$$

 $E_y = (0.5 \text{ V/m}) \cdot \cos \left[4\pi \cdot 10^7 / \text{s} (t - x/c) \right]$
 $E_z = (0.5 \text{ V/m}) \cdot \sin \left[4\pi \cdot 10^7 / \text{s} (t - x/c) \right]$.

- a) Bestimmen Sie die Wellenlänge λ , den Polarisationszustand, und die Ausbreitungsrichtung der Welle.
- b) Bestimmen Sie die Komponenten des Magnetfeldes \vec{B} der Welle.
- c) Berechnen Sie die mittlere Intensität \bar{I} der Welle.

Aufgabe 4: Radiosender (20%)

Ein Flugzeug empfängt Signale mit einer mittleren Intensität $\bar{I}=10\mu {\rm W/m^2}$ von einem Radiosender im Adstand $d=10\,{\rm km}$.

- a) Bestimmen Sie die effektive elektrische Feldstärke $E_{\text{eff}} = \sqrt{\overline{E^2}}$ am Ort des Flugzeugs.
- b) Bestimmen Sie die effektive magnetische Feldstärke $B_{\text{eff}} = \sqrt{\overline{B^2}}$ am Ort des Fleugzeugs.
- c) Bestimmen Sie die mittlere Leistung \bar{P} des Senders.

Nehmen Sie an, dass der Sender isotrop strahlt und dass die auf die Erde treffende Strahlung vollständig absorbiert wird.