Fundamentals of Optical Sciences

WS 2015/2016

1. Exercise

19.10.2015

Lecture: Prof. Dr. Alejandro Saenz, Prof. Dr. Oliver Benson

Prepare your answers for the excercise on 26.10.2015.

Exercise 1

The one-dimensional wave paket

$$p(z,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} dk \ A(k) e^{i(kz - \omega(k)t)}$$
(1)

in a dispersive medium with

$$\omega(k) = \alpha k^2 \tag{2}$$

possesses at t = 0 the shape of a Gaussian,

$$p(z,0) = C e^{-\frac{z^2}{2\Delta^2}} e^{ik_0 z}, \tag{3}$$

with the constants C, Δ , and k_0 .

a) Show that the weight function

$$A(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \mathrm{d}z \ p(z,0) e^{-ikz} \tag{4}$$

is also a Gaussian. What is the width Δk of $|A(k)|^2$? Let the width be defined as the distance Δk of the k values at which the function value has dropped to the fraction 1/e of its maximum.

Hint:
$$\int_{-\infty}^{+\infty} e^{-(ax^2+bx)} dx = \sqrt{\frac{\pi}{a}} e^{\frac{b^2}{4a}}$$

- b) Determine the full spatial and temporal dependence of p(z,t).
- c) Calculate the time dependence of the width $\Delta z(t)$ (defined analogous to Δk) of $|p(z,t)|^2$. What is the velocity with which the maximum of $|p(z,t)|^2$ moves? Compare it to the group velocity.

Exercise 2

A vector potential $\vec{A}(\vec{r},t)$ and a scalar potential $\phi(\vec{r},t)$ are given which should be transformed into a different gauge using the scalar field $\chi(\vec{r},t)$.

- a) Which equation has to be satisfied by χ if the gauged potentials satisfy the Lorenz condition? Why is the Lorenz gauge denoted as a gauge class?
- b) Which equation has to be satisfied by χ to transform into the Coulomb gauge? Is this equation always solvable?

Exercise 3

Consider the following Maxwell equations with the electric field \vec{E} , the magnetic induction \vec{B} , the dielectric displacement \vec{D} , and the magnetic field strength \vec{H} ,

$$\vec{\nabla} \cdot \vec{D} = \rho_e \qquad \vec{\nabla} \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J}_e$$

$$\vec{\nabla} \cdot \vec{B} = \rho_m \qquad -\vec{\nabla} \times \vec{E} = \frac{\partial \vec{B}}{\partial t} + \vec{J}_m,$$

which allow for the existence of magnetic monopoles with the magnetic charge density $\rho_m(\vec{r})$ and the magnetic current density $\vec{J_m}(\vec{r})$.

a) Show that the Maxwell equations are invariant under the transformation

$$\vec{E} = \vec{E}' \cos \xi + Z \vec{H}' \sin \xi \qquad \qquad \vec{D} = \vec{D}' \cos \xi + Z^{-1} \vec{B}' \sin \xi$$

$$\vec{H} = -Z^{-1} \vec{E}' \sin \xi + \vec{H}' \cos \xi \qquad \qquad \vec{B} = -Z \vec{D}' \sin \xi + \vec{B}' \cos \xi$$

(where $Z = \sqrt{\mu_0/\epsilon_0}$) under the condition that the charge density and the current density transform as

$$\rho_{e} = \rho'_{e} \cos \xi + Z^{-1} \rho'_{m} \sin \xi \qquad \vec{J}_{e} = \vec{J}'_{e} \cos \xi + Z^{-1} \vec{J}'_{m} \sin \xi
\rho_{m} = -Z \rho'_{e} \sin \xi + \rho'_{m} \cos \xi \qquad \vec{J}_{m} = -Z \vec{J}'_{e} \sin \xi + \vec{J}'_{m} \cos \xi .$$

b) The Lorentz force acting on a particle with electric charge q_e and magnetic charge q_m is given by

$$\vec{F} = q_e \left(\vec{E} + \vec{v} \times \vec{B} \right) + q_m \left(\vec{H} - \vec{v} \times \vec{D} \right).$$

Show that the Lorentz force is invariant under the transformations above as well.

c) What are the consequences of the invariance of the transformations for the existence of magnetic monopoles?