Fundamentals of Optical Sciences

WS 2015/2016
4. Exercise
09.11.2015

Lecture: Prof. Dr. Alejandro Saenz, Prof. Dr. Oliver Benson
Prepare your answers for the exercise on 16.11.2015.

Exercise 1

a) Show with the help of the (retarded) potentials from the first problem of the 3rd exercise sheet

$$
\phi(\vec{r}, t)=\frac{d_{0} \cos \theta}{4 \pi \epsilon_{0} r}\left(-\frac{\omega}{c} \sin \left[\omega\left(t-\frac{r}{c}\right)\right]+\frac{1}{r} \cos \left[\omega\left(t-\frac{r}{c}\right)\right]\right)
$$

and

$$
\vec{A}(\vec{r}, t)=-\frac{\mu_{0} \omega d_{0}}{4 \pi r} \sin \left[\omega\left(t-\frac{r}{c}\right)\right] \hat{e}_{z}
$$

and using $r \gg c / \omega$, that the electric and the magnetic fields of a dipole oscillating along the z axis are

$$
\vec{E}(\vec{r}, t)=\frac{\mu_{0} \omega^{2} d_{0}}{4 \pi r} \cos \left[\omega\left(t-\frac{r}{c}\right)\right]\left(\hat{e}_{z}-\frac{z}{r} \hat{e}_{r}\right)
$$

and

$$
\vec{B}(\vec{r}, t)=\frac{1}{c}\left(\hat{e}_{r} \times \vec{E}\right)
$$

Here $\hat{e}_{r}=\vec{r} / r$ is the unit vector in radial direction.
Hint: Use the relations $\hat{e}_{z}=\hat{e}_{r} \cos \theta-\hat{e}_{\theta} \sin \theta$ and $\hat{e}_{r} \times \hat{e}_{\theta}=\hat{e}_{\varphi}$ to get the form $\vec{E} \propto \hat{e}_{\theta}$ and $\vec{B} \propto \hat{e}_{\varphi}$.
b) A rotating dipole \vec{d} can be represented as the superposition of two oscillating dipoles where one dipole oscillates along the x axis and the other one along the y axis. The phase difference between the two dipoles is $\pi / 2$, i.e.

$$
\vec{d}=d_{0}\left[\cos (\omega t) \hat{e}_{x}+\sin (\omega t) \hat{e}_{y}\right]
$$

Determine the electric and the magnetic fields of an oscillating dipole using the superposition principle and the fields from part a). Calculate also the Poynting vector \vec{S}, its time average $\langle\vec{S}\rangle$, and the emitted power P. Compare P with the emitted power

$$
P_{1}=\frac{\mu_{0} d_{0}^{2} \omega^{4}}{12 \pi c}
$$

of an dipole oscillating along one axis. Did you expect your result?
Hint: $\vec{a} \times(\vec{b} \times \vec{c})=\vec{b}(\vec{a} \cdot \vec{c})-\vec{c}(\vec{a} \cdot \vec{b}) ; \quad \hat{e}_{r}=\left(x \hat{e}_{x}+y \hat{e}_{y}+z \hat{e}_{z}\right) / r \Rightarrow \vec{E} \cdot \hat{e}_{r}=?$

Exercise 2

Step-index and graded-index optical fibers
a) A step-index fiber has a radius of $a=5 \mu m$, core refractive index $n_{1}=1.45$ and a fractional refractive-index change $\Delta=0.002$. Determine the shortest wavelength λ_{c} for which the fiber is a single-mode waveguide. If the wavelength is changed to $\lambda_{c} / 2$, identify the indices (l, m) of all the guided modes.
b) Compare the numerical apertures of the step-index fiber from a) with a graded-index fiber with $n_{1}=1.45, \Delta=0.002$, and a parabolic refractive-index profile $(p=2)$, so that $n^{2}(y)=n_{0}^{2}\left(1-p^{2} y^{2}\right)$.

Exercise 3

Asymmetric planar waveguide
Examine the TE field in an asymmetric planar waveguide consisting of a dielectric slab of width d and a refractive index n_{1} placed on a substrate of lower refractive index n_{2} and covered with a medium of refractive index n_{3}, where $n_{3}<n_{2}<n_{1}$.
a) Determine an expression for the maximum inclination angle θ of plane waves undergoing total internal reflection, and the corresponding numerical aperture (NA) of the waveguide.
b) Write an expression for the self-consistency condition.
c) Determine an approximate expression for the number of modes M (valid when M is very large).
d) For the parameters $n_{1}=1.35, n_{2}=1.32, n_{3}=1.3$, plot the values of the effective refractive index $\left(\beta / k_{0}\right)$ as a function of the slab width normalized by the wavelength (d / λ) for the first 3 modes.

