Fundamentals of Optical Sciences

WS 2015/2016

10. Exercise

Lecture: Prof. Dr. Alejandro Saenz, Prof. Dr. Oliver Benson
Prepare your answers for the exercise on 11.01.2016.

Exercise 1

Consider the eigenstates $|n\rangle$ of the one-dimensional harmonic oscillator (with mass m and frequency ω) and the associated creation and annihilation operators \hat{a}^{\dagger} and \hat{a}.
a) Proof with the aid of the creation and annihilation operators the following recursion relations

$$
\begin{aligned}
\hat{\mathrm{q}}|n\rangle & =\sqrt{\frac{\hbar}{2 m \omega}}[\sqrt{n+1}|n+1\rangle+\sqrt{n}|n-1\rangle] \\
\hat{\mathrm{p}}|n\rangle & =i \sqrt{\frac{m \hbar \omega}{2}}[\sqrt{n+1}|n+1\rangle-\sqrt{n}|n-1\rangle]
\end{aligned}
$$

with the position operator $\hat{\mathrm{q}}=\sqrt{\hbar /(2 m \omega)}\left(\hat{\mathrm{a}}+\hat{\mathrm{a}}^{\dagger}\right)$ and the momentum operator $\hat{\mathrm{p}}=-i \sqrt{m \hbar \omega / 2}\left(\hat{\mathrm{a}}-\hat{\mathrm{a}}^{\dagger}\right)$.
b) Calculate (with the aid of the creation and annihilation operators) the expectation values of
i) the position operator \hat{q},
ii) the momentum operator $\hat{\mathrm{p}}$,
iii) the square of the position operator \hat{q}^{2} and
iv) the square of the momentum operator $\hat{\mathrm{p}}^{2}$
for the states $|n\rangle$.
c) Is the relation

$$
\langle n|\left(\hat{a}^{\dagger}\right)^{3} \hat{\mathrm{a}}^{4} \hat{\mathrm{a}}^{\dagger}|n\rangle=\frac{(n-1)(n-2)}{(n+2)(n+3)}\langle n| \hat{\mathrm{a}}^{3}\left(\hat{a}^{\dagger}\right)^{4} \hat{\mathrm{a}}|n\rangle
$$

valid?
d) Calculate the commutator relations
i) $[\hat{n}, \hat{a}]$,
ii) $\left[\hat{n}, \hat{a}^{\dagger}\right]$,
iii) $\left[\hat{a},\left(\hat{a}^{\dagger}\right)^{n}\right]$,
iv) $\left[(\hat{a})^{n}, \hat{a}^{\dagger}\right]$ and
v) $\left[\hat{a}, \exp \left(\beta \hat{a}^{\dagger}\right)\right]$
with the number operator $\hat{\mathrm{n}}=\hat{\mathrm{a}}^{\dagger} \hat{\mathrm{a}}$ and a constant β.

Exercise 2

Consider a two-mirror cavity with a gain medium. The mirrors have intensity reflection coefficients R_{1} and R_{2}. The gain medium is thin and has a round-trip intensity gain coefficient G.
a) Write down the cavity intensity at time $t+\tau_{\mathrm{rt}}$ in terms of the cavity intensity at time t, where τ_{rt} is the round-trip time of the cavity.
b) Expand the above expression to first order in τ_{rt}, and hence obtain a differential equation for $I(t)$. What are the conditions under which this approximation is justified?
c) Apply the result of part b) to a cavity without a gain medium, to derive an expression for the cavity photon lifetime τ_{rt}, defined as the time required for the cavity intensity to decay to $1 / e$ times its initial value.

Exercise 3

Write the rate equations for a 2-level system, showing that a steady-state population inversion cannot be achieved by using direct optical pumping between levels 1 and 2 .

Exercise 4

Consider the three-level laser scheme shown in the figure. The laser-cavity interacts only with transitions between level 2 and 1 (with the population numbers N_{2} and N_{1}). The cavity looses photons with a rate $R_{\text {loss }}$.

a) Write down the rate equations for the three levels of this gain-medium and the photon number n. Only the ratio of $0<\beta<1$ of R_{21} actually "feeds" the cavity (laser transition).
b) What are the conditions on R_{13}, R_{32}, R_{21} and β for a given $R_{\text {loss }}$ that ensure the best laser operation?
c) What is the average photon number in the cavity that ensures that there are at least as many stimulated decay processes (from level 2 to 1) than spontaneous?
d) Take a look at the rate-equation for the photon number in the stationary case in the lasing regime (ignore spontaneous emission): Derive an equation for the inversion $D=N_{2}-N_{1}$.

