Fundamentals of Optical Sciences

WS 2015/2016 11. Exercise 11.01.2016

Lecture: Prof. Dr. Alejandro Saenz, Prof. Dr. Oliver Benson

Prepare your answers for the exercise on 18.01.2016.

Exercise 1

For a 1D harmonic oscillator with mass m and frequency ω , consider the eigenstates $|\alpha\rangle$ of

the annihilation operator \hat{a} , $\hat{a} | \alpha \rangle = \alpha | \alpha \rangle$ with complex eigenvalues α . The eigenstates $|\alpha\rangle$ should be expanded in the basis $\{ |n\rangle \}$ of the energy and number operator eigenstates, so that $|\alpha\rangle = \sum_{n} c_{n} |n\rangle$.

- a) Determine the eigenstates $|\alpha\rangle$ by
 - i) identifying the recursion relation of the coefficients c_n ,
 - ii) expressing the coefficients c_n as a function of c_0 ,
 - iii) identifying the coefficient c_0 using the normalization condition $\langle \alpha | \alpha \rangle = 1$, and
 - iv) calculating the probability of measuring the energy eigenvalue $E_n = \hbar \omega (n + 1/2)$ of the state $|\alpha\rangle$.
- b) Characterize the states $|\alpha\rangle$ concerning their energy by calculating
 - i) the expectation value of the energy $\langle E \rangle$,
 - ii) the expectation value of the squared energy $\langle E^2 \rangle$,
 - iii) the resulting variance $\Delta E^2 = \langle E^2 \rangle \langle E \rangle^2$, uncertainty $\Delta E = \sqrt{\Delta E^2}$, and relative uncertainty $\Delta E / \langle E \rangle$.
 - iv) In which sense does the energy become better defined with increasing $|\alpha|$?
- c) Characterize the states $|\,\alpha\,\rangle$ concerning their expectation values of position and momentum by calculating
 - i) the position expectation value $\langle q \rangle$,
 - ii) the momentum expectation value $\langle p \rangle$, and
 - iii) the product of the position and momentum uncertainties $\Delta q \cdot \Delta p$.

Exercise 2

Consider the ring cavity laser illustrated here, where I_1 and I_2 indicate the intensities before and after the gain medium as shown, and the gain medium has length l_g .

Since the cavity has a ring configuration, light passes through the gain medium in one direction only. Starting with the single-pass gain relation for a medium of length l_g ,

$$\log G + \frac{I_1}{I_{\text{sat}}} (G - 1) = \gamma_0 \, l_g \tag{1}$$

where $G = I_2/I_1$ is the gain and γ_0 is the small-signal gain coefficient, show that the optimum output transmission for mirror R_1 is

$$T_1(\text{optimal}) \approx \sqrt{\gamma_0 l_g P_l} - P_l$$
 (2)

where P_l is the probability of *loss* in the other 3 mirrors.

Assume the laser cavity is operating in steady state (so that $G = 1/P_s$ where P_s is the total survival probability), and that all losses are due to mirror reflectivity. Further, work in the low-loss regime, where $1 - P_s$ is small, so that

$$\log \frac{1}{P_s} = -\log \left[1 + (1 - P_s)\right] \approx 1 - P_s .$$
(3)