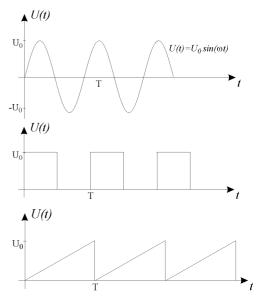
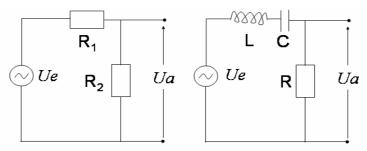
Übungen zur Physik für Chemiker I


Sommersemester 2010 Aufgaben zur 9. Übung am 15.06.10

Wechselstromkreise

24. Elektrische Leistung des Wechselstromes

An einem Ohm'schen Widerstand $R=20\Omega$ fällt eine periodische Spannung wie abgebildet ab ($U_0=120\mathrm{V}$, $T=20\mathrm{ms}$). Man berechne für alle drei abgebildeten Fälle


- a) den Strom als Funktion der Zeit,
- b) den Mittelwert des Stromes,
- c) die quadratisch gemittelte Stromstärke und die mittlere Leistung!

25. Frequenz-Durchlassfilter

Die Schaltung in der rechten unteren Abbildung stellt einen Frequenz-Durchlassfilter dar. Sei die Eingangsspannung sinusförmig mit der Frequenz ω gegeben.

- a) Berechne das Verhältnis $k=U_a/U_e$ der Eingangs- zur Ausgangsspannung. (**Hinweis:** Berechne zunächst das Verhältnis k für einen Ohm'schen Spannungsteiler (links) und ersetze anschließend R_I durch den komplexen Widerstand der Reihenschaltung Spule-Kondensator.
- b) Skizziere |k| als Funktion von ω . Finde die Resonanzfrequenz ω_R für die k maximal ist. Wie groß ist die Amplitude der Ausgangsspannung in der Resonanz?
- c) Als Resonanzbreite $\Delta\omega$ definiert man den Frequenzbereich zwischen den Frequenzen ω_l und ω_2 , für welche die Ausgangsspannung auf $1/\sqrt{2}$ des Resonanzwertes absinkt. Finde $\Delta\omega$ als Funktion von R und L!

Zusatzaufgabe für die Übung (nicht abzugeben)

Gegeben seien 2 komplexe Zahlen: $z_1 = 3 + 4i$, $z_2 = \frac{1-i}{2+i}$.

- a) Berechne den Real- und Imaginärteil von z_1 , z_2 als auch $\frac{z_1}{z_2}$
- b) Addiere und multipliziere die Zahlen.
- c) Bilde die komplex konjugierten Zahlen $\overline{z_1}$, $\overline{z_2}$.
- d) Schreibe die beiden Zahlen in der Form: $z = |z|e^{i\varphi}$ (berechne |z| und φ)