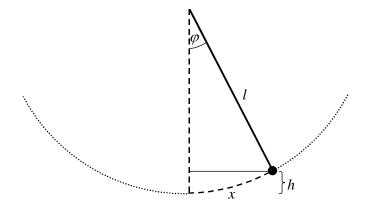
1. Aufgabe (6 Punkte)

Die Differentialgleichung des Fadenpendels kann über den "Umweg" der harmonischen Näherung des Potentials hergeleitet werden. Das Pendel besteht aus einem masselosen Faden der Länge l und einer punktförmigen Masse m (siehe Abbildung). Die Bewegung soll in Abhängigkeit der Auslenkung entlang der Bahn x ($x = \varphi \cdot l$) beschrieben werden. Für die Höhe h gilt dabei der folgende Zusammenhang: $h = l(1-\cos(x/l))$



a) Die potentielle Energie E_{pot} bzw. das Potential $\Phi(x(t))$ der Kugel (gegenüber der Ausgangslage h=0) kann nun geschrieben werden als:

$$\Phi(x(t)) = mgl(1 - \cos(x(t)/l)).$$

Zeigen Sie, dass näherungsweise gilt:

$$\Phi_{harm}(x(t)) = \frac{mg}{2l} x(t)^2,$$

indem Sie eine harmonische Näherung des Potentials $\Phi(x(t))$ mittels Taylorreihenentwicklung bis zur 2. Ordnung um $x_0 = 0$ durchführen!

- b) Benutzen Sie den genährten Ausdruck für die pot. Energie zur Herleitung der Geschwindigkeit v(x(t)), wenn das Pendel maximal bis zur Stelle $x = x_{max}$ ausgelenkt wird!
- c) Bestimmen Sie nun die Rückstellkraft aus dem genäherten Potential und geben Sie die Differentialgleichung (Bewegungsgleichung) an!

2. Aufgabe (6 Punkte)

Eine nicht gedämpfte Schwingung wird durch die Differentialgleichung $m\ddot{x}(t) + kx(t) = 0$ beschrieben. Als eine Lösung wird: $x(t) = A\sin(\omega t)$ angesetzt.

- a) Setzen Sie die Lösung in die Differentialgleichung ein und leiten Sie eine Formel her, in der **k** über **m** und ω bestimmt ist!
- b) Überprüfen Sie, ob die folgenden Funktionen die Differentialgleichung $\ddot{x}(t) + \omega^2 x(t) = 0$ erfüllen:

i)
$$x(t) = t^2 + A\cos(\omega t)$$

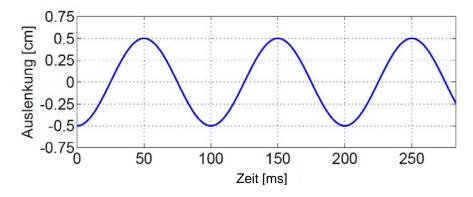
ii)
$$x(t) = A\sin(\omega t + \varphi_0)$$

iii)
$$x(t) = A\sin(\omega t) + B\cos(\omega t)$$

iv)
$$x(t) = Ae^{i(\omega t + \varphi_0)}$$

3. Aufgabe (4 Punkte)

In der Abbildung ist die Bewegung eines Federschwingers mit Masse m = 1kg dargestellt.



Lesen Sie die Amplitude A und die Frequenz f daraus ab! Berechnen Sie anschließend die Federkonstante D, die maximale Geschwindigkeit der Masse v_{\max} und die Gesamtenergie des Oszillators E_{Ges} !

4. Aufgabe (4 Punkte)

- a) Welche drei Fälle kann man bei der gedämpften Schwingung in Abhängigkeit vom Verhältnis der Zerfallkonstante γ zur Kreisfrequenz ω unterscheiden?
- b) Die folgende Formel beschreibt eine gedämpfte Schwingung.

$$z(t) = e^{-0.2 \cdot t} \cos(1 \cdot t)$$

Um welchen Typ von gedämpfter Schwingung handelt es sich?

- c) Fertigen Sie eine Wertetabelle an, die die folgenden Spalten enthält: Zeit t, Zeit/Periodendauer (t/T), $e^{-0.2 \cdot t}$ und z(t). Die Zeit soll dabei von 0s bis 10s in Schritten von 1 Sekunde eingetragen werden.
- d) Fertigen Sie ein Diagramm an, in dem Sie die Werte z(t) und $e^{-0.2 \cdot t}$ über t/T auftragen. Markieren Sie den Punkt, an dem die Amplitude auf den Wert 1/e abgefallen ist.