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We present an improved laboratory test of Lorentz invariance in electrodynamics by testing the
isotropy of the speed of light. Our measurement compares the resonance frequencies of two or-
thogonal optical resonators that are implemented in a single block of fused silica and are rotated
continuously on a precision air bearing turntable. An analysis of data recorded over the course of
one year sets a limit on an anisotropy of the speed of light of ∆c/c ∼ 1 × 10−17. This constitutes
the most accurate laboratory test of the isotropy of c to date and allows to constrain parameters of
a Lorentz violating extension of the standard model of particle physics down to a level of 10−17.

The theory of special relativity formulated in 1905 [2]
revealed Lorentz invariance as the universal symmetry of
local space-time, rather than a symmetry of Maxwell’s
equations in electrodynamics alone. This striking insight
was drawn from two postulates: (i) the speed of light
in vacuum is the same for all observers independent of
their state of motion, and (ii) the laws of physics are the
same in any inertial reference frame. Today, local Lorentz
invariance constitutes an integral part of the standard
model of particle physics, as well as the standard theory
of gravity, general relativity. Still, there have been claims
that a violation of Lorentz invariance might arise within
a yet to be formulated theory of quantum gravity [3–8].
Given a lack of quantitative predictions, the hope is to
reveal a tiny signature of such a violation by pushing test
experiments for Lorentz invariance across the board. An
overview of recent such experiments can be found in [9].

Previous measurements testing the isotropy of the
speed of light, often referred to as modern Michelson-
Morley experiments [10], have compared the resonance
frequencies of optical [11–14] or microwave [1, 15] cav-
ities, which were either actively rotated on a turntable
or relied solely on Earth’s rotation. The most precise of
these have tested the isotropy of c at an accuracy of a
few parts in 1016 limited by relative resonator frequency
stability.

The experiment presented here improves on this by one
order of magnitude, based on an optimized cavity design
and rotation on a precision turntable that allows to mini-
mize systematic effects. The basic principle is depicted in
Figure 1. At the core of the experiment are two crossed
optical Fabry-Pérot resonators. We compare their res-
onance frequencies by stabilizing two Nd:YAG lasers to
these cavities and taking a beat note measurement. The
resonance frequency ν of a linear Fabry-Pérot cavity de-
pends on the speed of light c along its optical axes as
given by

ν = mc/2L (1)

where m is an integer number and L is the length of the
resonator. Thus, to detect an anisotropy of the speed of
light ∆c = cx − cy we continuously rotate the setup and
look for a modulation of the beat frequency ∆ν. Since
the light in the cavities travels in both directions and

c refers to the two-way speed of light, such an isotropy
violation indicating modulation would occur at twice the
rotation rate.
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FIG. 1: Left: High-finesse fused silica resonators used in this
experiment. Right: Basic principle of the experiment. The
frequencies of two lasers, each stabilized to one of two or-
thogonal cavities, are compared during active rotation of the
setup. (Photograph by E. Fesseler)

I. THE EXPERIMENT

The experiment applies a pair of crossed optical high-
finesse resonators implemented in a single block of fused
silica (Figure 1). This spacer block is a 55 mm× 55 mm×
35 mm cuboid with centered perpendicular bore holes of
10 mm diameter along each axis. Four fused silica mir-
ror substrates coated with a high-reflectivity dielectric
coating at λ = 1064 nm are optically contacted to ei-
ther side. The length of these two crossed optical res-
onators is matched to better than 2µm. The finesse of
each resonator (TEM00 mode) is 380 000, resulting in a
linewidth of 7 kHz. Two Nd:YAG lasers at λ = 1064 nm
are stabilized to these resonators using a modified Pound-
Drever-Hall method [16]. Tuning and modulation of the
laser frequency is achieved with piezo electric actuators
attached to the laser crystal. Mechanical resonances of
the piezo-electric actuators at fm = 444 kHz and 687 kHz
respectively are used for modulation of the laser frequen-
cies. The light reflected from the cavities is detected and
demodulated at 3fm to generate an error signal. Ther-
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FIG. 2: Allan deviation calculated from a comparison of the
two stabilized laser frequencies (a) while the setup is rotating
and (b) with a stationary non rotating setup.

mal effects from dissipation of laser power inside the res-
onators are minimized by coupling less than 50µW opti-
cal power into the cavities.

The cavities are installed in a vacuum chamber to en-
sure light propagation in vacuum inside the resonators
and to reduce the influence of environmental noise, e.g.
thermal fluctuations and vibrations in the laboratory. By
placing the coupling optics inside the vacuum chamber as
well, a high pointing stability of the laser beams incident
on the resonators could be achieved. The custom-made
vacuum chamber features several stages of thermal insu-
lation and is placed upon an active vibration isolation
system (HWL, 350-M) (Figure 3).

To compare the stabilized laser frequencies, fractions of
1 mW of each laser beam are split off and are overlapped
on a fast photodiode to generate a beat note at the dif-
ference frequency ∆ν = ν1−ν2. By choosing appropriate
longitudinal modes of the cavities, this frequency is set
to < 2 GHz and counted with a sampling time interval
of one second. Since the length of the two cavities is
defined by a single monolithic block, drifts due to ther-
mal expansion are largely the same for both resonators
and thus cancel in a measurement of the difference fre-
quency. We have observed a reduction of the relative
drift to below 0.01 Hz/s as compared to 100 Hz/s abso-
lute frequency drift of the individual resonators.

The stability of the frequency beat note is then char-
acterized by calculating the Allan deviation. There is
a pronounced flicker floor from 1 s to 200 s at a level of
∼ 1.5× 10−15 (Figure 2) presumably caused by thermal
noise of the mirror substrates. This agrees with an esti-
mate of the thermal noise level of our cavity based on a
model of Numata et al. [17].

To enable continuous rotation of the resonators we em-
ploy an air bearing turntable which carries the complete
laser stabilization setup (Figure 3) and rotates at a cho-
sen rate of Ttt = 45 s. As opposed to using Earths ro-

tation alone, such active rotation allows us to perform
hundreds of rotations per day, while taking advantage of
the excellent mid-term frequency stability of the cavities
(Figure 2). On the other hand, active rotation potentially
causes a systematic modulation of the beat frequency
and might thus mimic an anisotropy signal. For exam-
ple, gravitational or centrifugal forces that act on the
resonators may get modulated with the turntable rota-
tion and therefore modulate the length of the resonators.
However, most of these effects lead to a modulation at a
rate of ωtt = 2π/Ttt so that they are in principle distin-
guishable from the anisotropy signal searched for at 2ωtt.
Moreover, if the data spans more than one day, system-
atic effects with a fixed phase in the laboratory average
out in the analysis for an anisotropy of c that is fixed rela-
tive to a sidereal frame. Although such an analysis helps
to discriminate a sidereal anisotropy signal from system-
atics, a large effort was still made to reduce systematic
effects both at 2ωtt and ωtt.

First of all, we use a high precision air bearing
turntable specified for < 1µrad rotation axis wobble.
Furthermore, we also prevent long-term variations of the
rotation axis tilt, caused for example by daily fluctua-
tions of the building tilt of several µrad. For this we apply
an active stabilization [13] that keeps the rotation axis
vertical to better than 1µrad, which reduces the effect
from a periodic deformation of the cavities to frequency
variations of less than 0.1 Hz in amplitude. Effects from
varying centrifugal forces are also reduced below an am-
plitude of 0.1 Hz by an active stabilization of the rotation
rate. Further measures include balancing the center of
mass of the table (< 1 mm offset from the rotation axis)
and shielding the lasers and optics outside the vacuum
chamber against air currents and temperature gradients
in the laboratory.

At the chosen rotation period of 45 s these measures
reduce residual systematic frequency variations at 2ωtt

to amplitudes below 0.1 Hz. This corresponds to a frac-
tional frequency shift of ∆ν/ν0 = 3×10−16, which is well
below the relative frequency stability of the beat note on
the timescale of a single rotation (see Figure 2). While
even faster rotation would have allowed to acquire more
data and thus improve statistics, it resulted in increased
residual systematic effects presumably due to modulated
centrifugal forces and was thus not implemented.

Measurements with this setup have been performed in-
termittently during a time span of more than one year
from May 2007 to June 2008. The total data includes
recordings of the beat frequency, time and rotation an-
gle at a sampling interval of 1 s from more than 130 000
turntable rotations.

II. ANALYSIS FOR AN ANISOTROPY SIGNAL

In what follows we first give a phenomenological, i.e.
largely model-independent, description of an anisotropy
signal and present results from a corresponding analy-
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sis. In Section II A and II B we then use these results
to determine parameters of two different test theories for
Lorentz violation. Throughout this analysis, we adopt
the inertial Sun centered celestial equatorial coordinate
frame (SCCEF) as used for the analysis of similar, pre-
vious such experiments [18]. This coordinate system has
the Z axis pointing north, the X axis pointing in the di-
rection of the vernal equinox point, and the Y axis such
that (X,Z,Y) form a right handed set.

Let us first consider the special case of the apparatus
located at the North pole with the turntable rotation axis
aligned with Earth’s rotation axis. An anisotropy in the
equatorial XY-plane (cX 6= cY ) then causes a modula-
tion of the beat frequency with the rotation of the setup.
As noted above, this modulation would be at twice the
rotation frequency, i.e. 2ωrot. If we fix the time axis rela-
tive to some arbitrary instant t = 0, we can describe this
signal as

ν1 − ν2
ν0

=
∆ν

ν0
= S′ sin 2ωrott+ C ′ cos 2ωrott, (2)

where ν0 ≈ 282 THz and S′, C ′ ∼ cX−cY
c . The rotation

of the setup within the sidereal frame of reference is a su-
perposition of turntable rotation ωtt and Earth’s sidereal
rotation at ω⊕ such that ωrot = ω⊕ ± ωtt, plus or minus
depending on the sense of turntable rotation. Since in
our experiment we have ωtt � ω⊕, we can describe the
anisotropy signal as a fast modulation at 2ωtt

∆ν

ν0
= S sin 2ωttt+ C cos 2ωttt, (3)

with amplitudes S and C that slowly vary with Earth’s
rotation as given by

S = −C ′ sin 2ω⊕t+ S′ cos 2ω⊕t, (4)

C = S′ sin 2ω⊕t+ C ′ cos 2ω⊕t. (5)

This daily modulation is essential to discriminate an
anisotropy signal from constant or slowly varying sys-
tematic effects caused by active rotation as described in
Section I. Only systematic effects subjected themselves
to a 23.93 h modulation would mimic such a sidereal
anisotropy signal.

Next, we consider an experiment located at an ar-
bitrary geographical latitude χ such that Earth’s axis
and the turntable rotation axis do not coincide anymore.
While this reduces sensitivity to an anisotropy in the
equatorial XY-plane, it additionally provides sensitivity
to an anisotropy in the XZ and YZ-plane. Furthermore, a
modulation at ω⊕ in addition to that at 2ω⊕ will appear.
We thus generalize the above expressions to the following
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FIG. 3: Schematic of the complete rotating setup (top) and
the custom-made vacuum chamber (bottom). TS=Tilt Sen-
sor, PDH=Pound-Drever-Hall laser stabilization electronics.

anisotropy signal (see [18] for a formal derivation)

S = S0 + Ss1 sin(ω⊕(t− t0)) + Sc1 cos(ω⊕(t− t0))

+ Ss2 sin(2ω⊕(t− t0)) + Sc2 cos(2ω⊕(t− t0)), (6)

C = C0 + Cs1 sin(ω⊕(t− t0)) + Cc1 cos(ω⊕(t− t0))

+ Cs2 sin(2ω⊕(t− t0)) + Cc2 cos(2ω⊕(t− t0)) , (7)

where the phase is fixed by t0 chosen in accordance to the
adopted reference frame conventions. Again, this daily
modulation at ω⊕ and 2ω⊕ makes it possible to distin-
guish between a sidereal anisotropy of c and systematic
effects due to the active rotation.

To analyze our data for a Lorentz violation signal of
the above form we proceed in two steps. First we deter-
mine the modulation amplitudes C and S as modeled in
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Eq.(3) from short samples of the data set spanning 10 ta-
ble rotations each. These samples extend over 450 s each
such that we may neglect a possible modulation due to
Earth’s rotation within each sample. We use a fit func-
tion of the form

∆ν/ν = S sin(2ωtt(t− t′0)) + C cos(2ωtt(t− t′0))

+AS sin(ωtt(t− t′0)) +AC cos(ωtt(t− t′0))

+A0 +A1t , (8)

where A0 and A1 account for an arbitrary offset and a
linear drift while AS and AC account for residual sys-
tematics at ωtt. In accordance with the reference frame
convention of [18] the starting time t′0 is determined by
the first instant of the measurement at which one of the
two resonators is oriented along the North-South direc-
tion. We choose a sample size of 10 rotations for each
fit rather than fitting single rotations to reduce the cor-
relation of a small linear drift and a sinusoidal variation
of the beat frequency. We found, however, that choosing
different sample sizes of n = 2 to 20 does not significantly
change the final results.

From each sidereal day (23.93 h) of measurement we
obtain a distribution of 192 values of S and C, and each
value is assigned the mean time of the respective data
sample. In total we obtain a distribution of 13384 values
for S and C as shown in Figure 4a.

Next, each 23.93 h interval of these distributions is fit-
ted with equations (6) and (7) to determine whether there
is any daily modulation as a consequence of a sidereal
anisotropy of c. The results are shown in Figure 4b+c as
well as in Figure 5. Each graph corresponds to a pair of
sidereal modulation amplitudes and shows a distribution
of 64 data points. Each point is determined from one day
of the measurement. The standard error associated with
each one-day data point is on the order of ∼ 5 × 10−17.
If for each sidereal modulation amplitude we take the
mean value of the corresponding 64 data points, we find
a standard error on the order of ∼ 7×10−18 for each dis-
tribution and no deviation from zero by more than three
standard errors.

Figure 4d shows the results for the modulation ampli-
tudes S0 and C0. These are solely connected to a modu-
lation at 2ωtt (Eq.(3), (6) and (7)) and thus are strongly
effected by any residual systematic effects fixed to the
laboratory frame. Single points of these amplitudes de-
viate by several standard errors from zero, however, over
the complete measurement span of one year, the data
points vary in magnitude and phase and thus average
out. The variation of these amplitudes over time can
also be seen from the bottom graphs in Figure 5.

Overall, we conclude that no significant evidence for an
anisotropy of c fixed relative to a sidereal frame can be
claimed from this data. This of course assumes otherwise
uncorrelated noise, e.g. no annual phase shift of a non-
zero anisotropy signal.

A. Analysis in the framework of the minimal
standard model extension

The above phenomenological results can be further
evaluated as a test of Lorentz invariance in electro-
dynamics, adopting the Lorentz violating extension of
the standard model of particle physics by D. Colla-
day and V.A. Kostelecký et al. [19, 20]. In this stan-
dard model extension (SME), Lorentz violation in elec-
trodynamics is modeled by extending the Lagrangian
of the photonic sector L = − 1

4F
µνFµν with a term

Lext = − 1
4 (kF )µνκλF

µνFκλ where Fµν is the electrody-
namic field tensor and (kF )µνκλ a tensor that parameter-
izes Lorentz violation with 19 independent components.

V.A. Kostelecký and M. Mewes [18] have shown that
with such an extra term the propagation of light in vac-
uum can be described in analogy to the propagation of
light in an anisotropic medium. They have also modeled
how this anisotropy affects the resonance frequency of a
linear optical Fabry-Pérot resonator. These results can
be used to model the amplitude coefficients of equations
(6) and (7) for our experiment.

The resulting expressions as derived explicitly in [13]
are given in Table II. Ten of the SME parameters are
linked to birefringence and are restricted to values <
10−32 by astrophysical measurements [18, 21]. These
parameters are assumed to be zero here. Eight of the
remaining nine SME parameters, grouped into two trace-
less 3x3 matrices κe− and κo+, can then be determined
from the present measurement: Five are parity even and
boost independent (κe−, symmetric) and three are par-
ity odd and boost dependent (κo+, antisymmetric). The
boost dependent parameters κo+ lead to an annual phase
shift of the anisotropy signal due to Earth’s orbital revo-
lution (Table II). Note that since our measurement spans
more than one year we are indeed able to resolve such an
annual variation.

A simultaneous fit of the expressions in Table II to the
2×5 distributions of sidereal modulation amplitudes ob-
tained from our data, yields estimates on the eight SME
parameters as summarized in Table I. Four parameters of
κe− and the three boost dependent parameters of β⊕κo+
(with Earth’s orbital boost β⊕ = v⊕/c = 10−4) feature a
standard error of ∼ 1×10−17, while one parameter, κZZe− ,
shows a slightly increased error bar of 1.7× 10−17. This
is attributed to the fact that κZZe− enters the C0 compo-
nent only, which is most prone to the residual systematic
effects as discussed above in Section II A.

All together these limits represent a significant im-
provement of more than one order of magnitude over the
results of the best previous experiment by Stanwix et al.
[1]. They also complement results from a newly emerg-
ing astrophysical technique, which argues that equivalent
limits at the 10−18 level can be obtained by analyzing ob-
servations of ultra-high energy cosmic rays [22].
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FIG. 4: Results I. a): Cosine amplitudes C (left) and Sine amplitudes S (right) of a systematic beat frequency modulation at
2ωtt for all n = 13384 measurement subsets (10 rotations each). t′0 is set to an instant when one of the resonators is oriented
along the North South axis. b)+c): Amplitudes of a superimposed 2ω⊕ (11.96 h) (b) respectively ω⊕ (23.93 h) (c) modulation
of C and S respectively, as expected for an anisotropy of c fixed within a sidereal frame. Each point represents the amplitudes
determined from a 23.93 h set of data. 64 such data sets are included. t0 is set to an instant when the East-West axis of the
laboratory coincides with the Y-axis of the adopted SCCEF reference frame. Error bars are omitted for the purpose of clarity
except for one representative data point. d): Amplitudes C0 and S0 as modeled in equations (6) and (7), which are most prone
to constant systematic effects (note the different scale). The mean values and standard errors (shown in red in (b),(c) and (d))
of the modulation amplitudes as modeled in equations (6) and (7) are: C0 = −0.2 ± 11.7, Cs1 = 15.5 ± 6.0, Cc1 = −9, 9 ± 7.2,
Cs2 = −1.5±6.6, Cc2 = 4.0±6.6 and S0 = −10.2±14.4, Ss1 = −3.1±6.4, Sc1 = −2, 7±8.1, Ss2 = −5.0±6.2, Sc2 = −5.5±6.7
(all values ×10−18).



6

2700 2800 2900 3000 3100
-4

-3

-2

-1

0

1

2

3

4

C
0
[x

1
0

-1
6
]

dayssince01/01/2000

2700 2800 2900 3000 3100
-4

-3

-2

-1

0

1

2

3

4

S
0
[x

1
0

-1
6
]

dayssince01/01/2000

2700 2800 2900 3000 3100
-2

-1

0

1

2

S
s2

[x
1
0

-1
6
]

2700 2800 2900 3000 3100
-2

-1

0

1

2

S
c2

[x
1
0

-1
6
]

2700 2800 2900 3000 3100
-2

-1

0

1

2
S

s1
[x

1
0

-1
6
]

2700 2800 2900 3000 3100
-2

-1

0

1

2

S
c1

[x
1
0

-1
6
]

2700 2800 2900 3000 3100
-2

-1

0

1

2

C
s2

[x
1
0

-1
6
]

2700 2800 2900 3000 3100
-2

-1

0

1

2

C
c2

[x
1
0

-1
6
]

2700 2800 2900 3000 3100
-2

-1

0

1

2

C
s1

[x
1
0

-1
6
]

2700 2800 2900 3000 3100
-2

-1

0

1

2

C
c1

[x
1
0

-1
6
]

FIG. 5: Results II. Data of Figure 4 plotted vs time. As in Figure 4 each point represents the amplitude determined from a
23.93 h set of data. See caption of Figure 4 for more details.
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TABLE I: Estimates on photonic SME parameters obtained
from this work (one sigma errors). For comparison the limits
obtained by Stanwix et al. [1] are also given. All values are
×10−17. β⊕ = v⊕/c = 10−4 accounts for Earth’s orbital
boost.

this work Stanwix et al. [1]

κXYe− -0.31 ± 0.73 29 ± 23

κXZe− 0.54 ± 0.70 -69 ± 22

κY Ze− -0.97 ± 0.74 21 ± 21

κXXe− − κY Ye− 0.80 ± 1.27 -50 ± 47

κZZe− -0.04 ± 1.73 1430 ± 1790

β⊕κ
XY
o+ -0.14 ± 0.78 -9 ± 26

β⊕κ
XZ
o+ -0.45 ± 0.62 -44 ± 25

β⊕κ
Y Z
o+ -0.34 ± 0.61 - 32 ± 23

B. Analysis in the Mansouri-Sexl framework

We also analyze the data according to the kinematic
test theory of R. Mansouri and R.U. Sexl [23], which
builds on earlier work by H.P Robertson [24]. In this
test theory a preferred frame is assumed in which the
speed of light c is isotropic, usually taken to be the cosmic
microwave background. General, linear transformations,
using three free parameters α, β, δ, transform from this
preferred frame to a frame moving at a velocity v. In the
moving frame an anisotropy of the propagation of light
then takes the form ∆c/c = (β+ δ− 1

2 )v2/c2 sin2 θ where
θ is the angle between the direction of the propagation
of light and the direction of v. For α = 1

2 , β = 1
2 , δ = 0,

the generalized transformations reduce to Lorentz trans-
formations and no anisotropy of c is observed.

A derivation of the signal amplitudes of equations (6)
and (7) in the Mansouri-Sexl framework has been given
in [13]. The resulting expressions are given in Table III.

Therein we take the velocity of the laboratory relative
to the CMB as the superposition of the solar system’s
velocity vc = 370 km/s, pointing towards ψ = 100◦ right
ascension and φ = −7◦ declination and the annual mod-
ulation due to Earth’s orbit with v⊕ = 30 km/s.

Simultaneously fitting these expressions to our data
yields a value of (β + δ − 1

2 ) = (4± 8)× 10−12. This is a
factor of 10 more stringent as compared to the value of
(9.4± 8.1)× 10−11 given by Stanwix et al. [1].

III. CONCLUSION

In conclusion, we have set a limit on an anisotropy of
the speed of light at a level of ∆c/c ∼ 1 × 10−17, which
allows us to confirm the validity of Lorentz invariance in
electrodynamics at the 10−17 level. This accuracy has
been obtained with optical resonators that feature a rel-
ative frequency stability of ∆ν/ν0 ∼ 1×10−15 in 1 s. The
final precision could be reached by integrating over more
than 130 000 rotations relying on a careful suppression of
systematic effects caused by the turntable rotation.
Finally, we note that comparable results from a similar
experiment [25] have been reported after submission of
this manuscript.

The relative frequency stability is currently limited by
thermal noise of the cavity mirrors. Thus, in the longer
term it should be possible to improve the relative fre-
quency stability by using cryogenic resonators [11, 26].
Together with a reasonable improvement in the suppres-
sion of systematic effects, this would ultimately allow one
to test for potential violations of Lorentz invariance in
electrodynamics in the ∆c/c ∼ 10−20 regime.

We thank G. Ertl for his support and H. Müller for
valuable discussions. S. H. acknowledges support from
the Studienstiftung des deutschen Volkes.
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SME amplitude

C0: γ0
(
3
2
κ̃ZZe− − β⊕[(cos ηκ̃XZo+ + 2 sin ηκ̃XYo+ ) cos Ω⊕T + κ̃Y Zo+ sin Ω⊕T ]

)
Cs1: γ1

(
−κ̃Y Ze− + β⊕[cos ηκ̃XYo+ − sin ηκ̃XZo+ ] cos Ω⊕T

)
Cc1: γ1

(
−κ̃XZe− + β⊕[sin ηκ̃Y Zo+ cos Ω⊕T − κ̃XYo+ sin Ω⊕T ]

)
Cs2: γ2

(
κ̃XYe− − β⊕[cos ηκ̃Y Zo+ cos Ω⊕T + κ̃XZo+ sin Ω⊕T ]

)
Cc2: γ2

(
1
2
[κ̃XXe− − κ̃Y Ye− ] − β⊕[cos ηκ̃XZo+ cos Ω⊕T − κ̃Y Zo+ sin Ω⊕T ]

)
S0: 0

Ss1: γ3
γ1
Cc1

Sc1: − γ3
γ1
Cs1

Ss2: − γ4
γ2
Cc2

Sc2: γ4
γ2
Cs2

TABLE II: Modulation amplitudes according to equations (6) and (7) related to photonic SME parameters. γ0 = 1
4

sin2 χ,

γ1 = 1
2

cosχ sinχ, γ2 = 1
4
(1 + cos2 χ), γ3 = − 1

2
sinχ and γ4 = 1

2
cosχ. Relations are stated to first order in orbital boost.

β⊕ = 10−4 is the boost parameter, χ = 37◦ is the colatitude of the Berlin laboratory and η = 23◦ is the tilt of Earth’s axis
relative to the SCCEF Z-axis. In accordance to the reference frame conventions in [18]. T = 0 is set to the instant of Earth
passing vernal equinox.

RMS amplitude
(
×
(
β + δ − 1

2

) v2c
c2

)
C0: 1

2
γ0(−1 + 3 cos 2φ) + 2

v⊕
vc
γ0(sinψ cosφ cos η − 2 sinφ sin η) cos Ω⊕T + 2

v⊕
vc
γ0 cosφ cosψ sin Ω⊕T

Cs1: −γ1 sinψ sin 2φ− 2
v⊕
vc
γ1(sinφ cos η + sinψ cosφ sin η) cos Ω⊕T

Cc1: −γ1 cosψ sin 2φ− 2
v⊕
vc
γ1 cosψ cosφ sin η cos Ω⊕T − 2

v⊕
vc
γ1 sinφ sin Ω⊕T

Cs2: −γ2 sin 2ψ cos2 φ− 2
v⊕
vc
γ2 cosψ cosφ cos η cos Ω⊕T − 2

v⊕
vc
γ2 sinψ cosφ sin Ω⊕T

Cc2: −γ2 cos 2ψ cos2 φ+ 2
v⊕
vc
γ2 sinψ cosφ cos η cos Ω⊕T − 2

v⊕
vc
γ2 cosψ cosφ sin Ω⊕T

S0: 0

Ss1: γ3
γ1
Cc1

Sc1: − γ3
γ1
Cs1

Ss2: − γ4
γ2
Cc2

Sc2: γ4
γ2
Cs2

TABLE III: Modulation amplitudes according to equations (6) and (7) related to the RMS parameter (β + δ − 1
2
). γ0 =

1
4

sin2 χ, γ1 = 1
2

sinχ cosχ, γ2 = 1
4
(1 + cos2 χ), γ3 = − 1

2
sinχ and γ4 = 1

2
cosχ. χ = 37◦ denotes the laboratory colatitude,

η = 23◦ the tilt of Earth’s axis relative to the SCCEF Z-axis. ψ = 100◦ right ascension and φ = −7◦ declination denote the
direction of the solar systems velocity relative to the cosmic microwave background. Terms varying with Earth’s orbital motion
are suppressed by v⊕/vc ∼ 0.08. Also here T = 0 is set to the instant of Earth passing vernal equinox.
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