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Abstract

Recently, cooling, trapping and manipulation of neutral atoms and ions has
become an especially active field of quantum physics. The main motiva-
tion for the cooling is to reduce motional effects in high precision measure-
ments including spectroscopy, atomic clocks and matter interferometry. The
spectrum of applications of these quantum devices cover a broad area from
geodesy, through metrology up to addressing the fundamental questions in
physics, as for instance testing the Einstein’s equivalence principle. However,
the unprecedented precision of the quantum sensors is limited in terrestial
laboratories. Freezing atomic motion can be nowadays put to the limit at
which gravity becomes a major perturbation in a system. Gravity can sig-
nificantly affect and disturb the trapping potential. This limits the use of
ultra-shallow traps for low energetic particles. Moreover, free particles are
accelerated by gravitational force, which substantially limits the observation
time.

Targeting the long-term goal of studying cold quantum gases on a space
platform, we currently focus on the implementation of a Bose-Einstein con-
densate (BEC) experiment under microgravity conditions at the drop tower
in Bremen. Special challenges in the construction of the experimental setup
are posed by a low volume of the drop capsule as well as critical decelerations
up to 50g during recapture at the bottom of the tower. All mechanical and
electronic components were thus been designed with stringent demands on
miniaturization and mechanical stability.

This work reports on the observation of a BEC released from an ultra-
shallow magnetic potential and freely expanding for one second. Both, the
low trapping frequency and the long expansion time are not achievable in
any earthbound laboratory. This unprecedented time of free evolution leads
to new possibilities for the study of BEC-coherence. It can also be applied
to enhance the sensitivity of inertial quantum sensors based on ultra-cold
matter waves.

Keywords:
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Abstract

Ultra-kalte atomare Gase werden in zahlreichen Laboren weltweit untersucht
und finden unter anderem Anwendung in Atomuhren und in Atominterferom-
eter. Die Einsatzgebiete erstrecken sich von der Geodäsie über die Metrologie
bis hin zu wichtigen Fragestellungen der Fundamentalphysik, wie z.B. Tests
des Äquivalenzprinzips. Doch die beispiellose Messgenauigkeit ist durch die
irdische Gravitation eingeschränkt. Zum einen verzerrt die Schwerkraft das
Fallenpotential und macht damit die Reduktion der atomaren Energie unter
einem bestimmten Limit unmöglich. Zum anderen werden die aus einer Falle
frei gelassenen Teilchen durch die Erdanziehung beschleunigt und so ist deren
Beobachtungszeit begrenzt.

Im Rahmen dieser Arbeit werden die Ergebnisse des Projektes QUAN-
TUS (Quantengase Unter Schwerelosigkeit) dargestellt. Auf dem Weg zur
Implementierung eines Quantengasexperimentes im Weltraum wurde inner-
halb einer deutschlandweiten Zusammenarbeit eine kompakte, portable und
mechanisch stabile Apparatur zur Erzeugung und Untersuchung eines Bose-
Einstein-Kondensats (BEC) unter Schwerelosigkeit im Fallturm Bremen en-
twickelt. Sowohl die Abbremsbeschleunigung von bis zu 50 g als auch das
begrenzte Volumen der Fallkapsel stellen hohe Ansprüche an die mechanische
Stabilität und die Miniaturisierung von optischen und elektronischen Kom-
ponenten. Der Aufbau besteht aus einer im ultra-hoch Vakuum geschlosse-
nen magnetischen Mikrofalle (Atomchip) und einem kompakten auf DFB-
Dioden basierenden Lasersystem. Mit diesem Aufbau ließ sich das erste
BEC unter Schwerelosigkeit realisieren und nach 1 Sekunde freier Expan-
sion zu beobachten. Weder die schwache Krümmung des Fallenpotentials
noch die lange Beobachtungszeit würden in einem erdgebundenen Experi-
ment realisierbar.

Die erfolgreiche Umsetzung des Projektes eröffnet ein innovatives Forschungs-
gebiet - degenerierte Quantengase bei ultratiefen Temperaturen im pK-Bereich,
mit großen freien Evolutions- und Beobachtungszeiten von mehreren Sekun-
den.

Schlagwörter:
Bose-Einstein Kondensat, Schwerelosigkeit, magnetische Falle, Atom-Chip
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Chapter 1

From Quantum to Cosmos

1.1 Introduction
Human’s curiosity to go beyond the current frontiers is the main catalyst of
progress. During one of his ”post-Nobel” lectures, Wolfgang Ketterle told a
story of the people of a tropical tribe. They suffer from an awful heat, so
they invent a fridge. Their motivation was just to cool drinking water, but
to their surprise, they discover ice - a novel state of water!1

There are many examples in everyday life showing that technological im-
provements revealed new phenomena, inspired new ideas, confirmed or de-
throned well established theories. In physics, two such particularly rewarding
trends have determined the way of making fundamental research in the last
decades. The first is to still increase the energy of a system. New constituents
of matter are sought for by colliding known particles accelerated to enormous
energies in the TeV range. Incessant attempts to find the Higgs boson is an
illustrative example here. On the other end of the energy scale there is a
quest for achievement of ever lower temperatures. It was marked with im-
portant discoveries in the last centuries, like gas to liquid phase transitions,
superfluidity or superconductivity.

Recently, cooling, trapping and manipulation of neutral atoms and ions
has become an especially active field of quantum physics. The main motiva-
tion for the cooling is to reduce motional effects in high precision measure-
ments including spectroscopy, atomic clocks and matter interferometry. The
high speed of the atoms makes measurements difficult. The Doppler shift
causes displacement and broadening of the spectral lines of thermal atoms.

1Based loosely on the lecture: ”Ultrakalte Quantengase: die kälteste Materie im Uni-
versum” held by W. Ketterle in 2004 by a colloquium of the Physical Society of Berlin
(PGzB).

1
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Furthermore, the high atomic velocities limit the observation time and thus
the spectral resolution. To give some numerical examples, air molecules at
room temperature move with speeds on the order of 300 m/s. At this speed
it takes the particles only 3 ms to pass through a 1 m long detecting device.
Cooling to 4 K, the temperature of liquid helium, would reduce the mean
speed roughly 9 times only. Laser cooling allows one to slow neutral atoms to
a speed as low as a few cm/s and the corresponding temperatures are in the
µK range. Other powerful cooling technique, evaporative cooling can reduce
this speed by another order of magnitude. At this low temperature some re-
markable new phenomena appear: the wave nature of the particles becomes
apparent. The de Broglie matter wavelength, given by λDB = h/p, where p
is atomic momentum and h the Planck constant, becomes comparable to the
mean atom-atom separation and a phase transition to the Bose-Einstein con-
densate occurs. Quantum degenerate matter of Bose-Einstein condensates
forms the coldest objects in the universe with effective temperatures in the
low nK range.

However, further reduction of the atomic energy is hardly possible. Freez-
ing atomic motion can be nowadays put to the limit at which Earth’s gravity
becomes a major perturbation in a system. Unlike electromagnetic forces,
gravity cannot be controlled by experimentalists. Rather, it is a constant
accompanying potential which has to be accounted for when trapping mas-
sive particles. Inside of a closed trapping volume a trapping potential must
feature a gradient that is larger than the gravitational force on the trapped
atoms. This limits the usefulness of ultra-shallow traps for low energetic
particles. In contrast, microgravity offers a significant potential to further
extend the physics of degenerate quantum gases towards nowadays inaccessi-
ble regimes of low energies and macroscopic dimensions of coherent matter-
waves. Physics at the lower end of the energy scale might result in a dis-
covery of ”ice in the fridge”. New phases of matter could be observed and
physical phenomena, like weak, long-range magnetic dipole-dipole interac-
tions [Stuhler et al., 2005; Schmaljohann et al., 2004], could be studied in
the reduced-gravity environment. Moreover, in the absence of gravity the
trapping potential can be completely switched off. This will allow for an
enhancement of the free evolution time of the released sample by many or-
ders of magnitude. Longer observation times are crucial for increasing the
precision of some measurements. For example, accuracy of the atomic clocks
in space could be improved by a factor of ten compared to the currently most
precise earthbound clocks [Laurent et al., 1998].

After a brief introduction to the issues of ultra-cold quantum degenerate
matter, this chapter gives an overview of how particularly this field of modern
physics can benefit from space environment. Advantages of weightlessness
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are discussed and the state-of-the-art on the way to a quantum laboratory
in space is presented.

1.2 Bose-Einstein condensate
Bose-Einstein condensate (BEC) is an unusual state of matter in which
bosons collectively occupy the energetic ground state of a quantum system.
Millions of atoms loose their identity and form a single macroscopic wave
function. This property makes the BEC to a great extent similar to a laser
in which large number of photons occupy the same mode of the electro-
magnetic field. Due to the resulting coherence of the wave function, BEC
applications in matter-wave interferometry (atom optics) are very promising
in terms of enhanced contrast. Experiments based on single particle interfer-
ence with thermal ensembles features a coherence length typically well below
a µm. The phenomenon of Bose-Einstein condensation allows to create for
the first time a macroscopically occupied matter wave with coherence length
up in the mm range.

BEC is a purely statistical phenomenon. In 1924, S.N. Bose derived an
energy distribution function for photons closed in a finite volume [Bose, 1924].
He based just on a very few general assumptions, which are foundation of the
statistical physics (for derivation of the Bose statistic see for instance [Alonso
and Finn, 2005]). One year later, Einstein generalized Bose’s approach to
massive particles of an ideal noninteracting gas [Einstein, 1925]. Moreover,
he recognized for the first time the phase transition in the occupancy number
of the ground state when the temperature approaches the absolute zero.

Some physical effects, like superfluidity or superconductivity are explained
by a partial Bose-Einstein condensation. Observation of BEC in excitons has
also been reported in 1990 [Snoke et al., 1990]. However, first after the re-
alization of the BEC in dilute atomic gases in 1995 [Davis et al., 1995a;
Anderson et al., 1995; Bradley et al., 1995], the subject undergoes a renais-
sance as confirmed by the Nobel prize in 2001. The ”golden era” of BEC
is associated with dramatically increased number of publications covering a
broad theme spectrum like matter wave interference, superfluidity and vortex
lattices, solitons and four-wave mixing in matter waves, matter wave amplif-
cation and atom lasers, quantum phase transitions such as the superfuid
to Mott insulator transition, quantum gas magnetism and controlled cold
molecule production, to name only a few points. The physics of BEC has
already been summarized in several review articles, e.g. [Ketterle et al., 1999;
Bongs and Sengstock, 2004] and textbooks, e.g. [Pethick and Smith, 2002;
Pitaevskii and Stringari, 2003]. Here, following the notation of [Pethick and
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Smith, 2002], a brief summary of the most important issues will be pointed
out.

At a given temperature T the mean occupation number of the single
particle state ν is given by the Bose distribution function:

f(εν) = 1
e
εν−µ
kT − 1

, (1.1)

where k is the Boltzmann constant, εν the energy of the state ν and µ the
chemical potential. µ is determined from the normalization of the distribu-
tion 1.1 to N and its physical meaning is the energy required to add one
particle to the system. As the temperature decreases, µ rises and approaches
εmin, the energy of the ground state. If µ = εmin, the occupation of the
ground state f(εmin) goes to infinity: the condensation occurs.

For a three-dimensional harmonic trap characterized by the oscillation
frequencies ωi (i = 1, 2, 3) and confining N particles the condensation begins
at the critical temperature Tc:

kTc ≈ 0.94~ω̄N1/3 (1.2)

with ω̄ = (ω1ω2ω3)1/3. If the temperature further decreases, e.g. when the
cooling process proceeds, the fraction of condensed particles increases as

NBEC(T )
N

= 1−
(
T

Tc

)3
. (1.3)

For noninteracting gases with large N , condition 1.2 can be equivalently
expressed in terms of the phase-space density ρps. This is defined as the
product of the atomic density n and the cube of the thermal de Broglie
wavelength λdB:

ρps = nλ3
dB = n

(
2π~2

mkT

)3/2

, (1.4)

where m is the atomic mass. The BEC transition appears when ρps = 2.612.
A phase-space density close to unity means that the de Broglie wavelength
is comparable to the mean distance n−1/3 between the atoms. The waves
associated with the individual atoms begin to overlap and form a giant single
wave, a condensate.

One important issue of the BEC is its extremely narrow velocity distribu-
tion compared to that of the thermal atoms. This holds even in the presence
of repulsive interatomic interactions in the BEC. The interaction strength de-
pends on the atom density, thus it decreases in a shallow trap, whose ground
state is considerably extended in space. In the limiting case of an extremely



5

decompressed trap, in which interactions could be neglected, the spreading
of the BEC released from the trap results from the Heisenberg uncertainty
principle and thus from the initial density distribution. It follows, that in-
creasing the size of the ground state of the trap, that is decreasing its energy,
slows down the expansion speed. The experiment described in this thesis
allowed for the observation for the first time of a freely evolving BEC for
a time scales of the order of 1 s. Both, the low steepness of the trap and
the unprecedented time of the free evolution would not be achievable in an
earthbound laboratory due to a disturbing effect of gravity.

1.3 Disadvantages of the gravity

1.3.1 Short observation time
Consider a sample of 87Rb atoms cooled to a few nK - the critical temperature
at which the Bose-Einstein condensation occurs. At this temperature the
corresponding average energy per atom is equal to the gravitational potential
energy of a single Rb atom at the height of 100 nm, much smaller than a
typical physical extension of the condensate. Moreover, the atoms have, on
average, a speed of less than 2 mm/s. If the confining potential is switched off
the atoms accelerate pulled by the gravity. After just one tenth of a second
their velocity exceeds the initial velocity by a factor 50. After another tenth
of a second they have dropped by 20 cm and have usually hit the bottom of
the vacuum chamber in which they were cooled. In practice the observation
time is limited to the time of flight through the view field of the imaging
device. A typical series of absorption images of the condensate taken on the
ground for increasing time of flight (TOF) is shown in figure 1.1. After 30
ms TOF the atoms fly out of the 5 mm view field of the CCD-camera chip.

1.3.2 Deformation of the trapping potential
The destructive influence of the gravity on a trapping potential is shown in
figure 1.2. If the trap was harmonic, the addition of the linear term −mgz
would pull down2 the potential minimum by ∆z = g/ω2, where m is an
atomic mass and g the gravitational acceleration. This effect is known as the
”gravitational sag”. However, real trapping potentials can be approximated
by harmonic only (if at all) in the vicinity of the minimum (see appendix A).
In the space region where the gradient of the trapping potential is smaller
than mg, that is where gravity dominates over the trapping force, the trap is

2Note that throughout this work the z-axis points down, just as ~g.
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Figure 1.1: A series of absorption images of the condensate released from
the trap (left). Since the measurement is destructive, each image represents
a new experiment with TOF increasing in 1 ms steps. Vertical position
as a function of TOF (right). The red solid line represents the expected
acceleration due to the Earth gravity.

open. Particles with energies higher than the potential barrier ∆U can leave
the trap.

Gravity is also a disturbing factor for the trapping of cold gas mixtures.
Atoms with different masses experience different gravitational forces and
therefore can not be equally well held by the trapping potential.

Figure 1.2: Linear gravity potential (central graph) opens the trap and
leads to the losses of particles.

1.3.3 Limited trap flatness
It is obvious that a shallow trap is more affected by the gravity3. In the lim-
iting case the gradient of the trapping potential is nowhere larger than the

3For the magnetic trap used for the purpose of this thesis the effect of gravity is
quantitatively discussed in section 3.2.4 (Fig. 3.12).
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gravitational force and the potential minimum does not exist. Typical har-
monic trapping frequencies in the earthbound experiments are of the order
of tens of Hz. Leanhardt et al. [Leanhardt et al., 2003] used a sophisticated
levitation technique to compensate the gravity. They managed to adiabati-
cally reduce the average trapping frequency to ω̄ = 2π×1.12 Hz and reached
a sample temperature of 500 pK.

Advantage of the free-fall environment is the possibility to use weaker
confining forces on the atoms without the need of (noisy) levitational fields
to compensate for the gravity. Sub-Hertz trapping frequencies and the corre-
sponding temperatures in the femto-Kelvin range could be easily realized in
space. Decompression of the trap is motivated by the need to slow down the
expansion of atoms released from the trap. The expansion speed depends
on the initial energy and thus on the trapping frequency. As an example,
absorption images of the BEC released from traps with different curvatures
are shown in figure 1.3. Both pictures were taken after 50 ms of the free ex-
pansion, a time hardly achievable on the Earth. Obviously the matter wave
released from the shallower trap spreads much slower.

Figure 1.3: Absorption images of a BEC released from traps characterized
by the average harmonic trapping frequency ω̄ = 2π × 110 s−1 (left) and
ω̄ = 2π × 20 s−1 (right). Both pictures were taken after 50 ms of the free
expansion.

1.4 Advantages of the space environment
”From Quantum to Cosmos” - the title of this chapter - is the name of an
international workshop on the space-based research in fundamental physics
and quantum technologies. The meeting was first held at the Airlie Center in
Warrenton, Virginia on May 2006 and has since that time become an yearly
event. Its main scope is to demonstrate if (and how) the laboratory exper-
iments in space can provide the knowledge needed to address outstanding
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questions at the intersection of physics and astronomy.
There are two approaches to the physical research in space: one can de-

tect and study signals from remote astrophysical objects or one can perform
carefully designed in-situ experiments. The two methods are complemen-
tary and the latter has the advantage of utilizing a well-understood and
controlled laboratory environment in space. Currently available technologies
in conjunction with existing space capabilities offer unique opportunities to
take advantage of the variable gravity potentials, large distances, and high
velocity and acceleration regimes accessible in space. Furthermore, space is
an ideal low noise environment for high precision measurements. As a result,
new techniques in quantum physics can achieve their full measurement po-
tential in space and therewith address some fundamental questions. Two of
these tools: astoundingly accurate atomic clocks and matter-wave interfer-
ometers based on ultra-cold atoms have already been recognized as certain
candidates for a space mission and therefore they will be briefly introduced
here.

1.4.1 Atomic clocks

Figure 1.4: a) Cs beam clock; b) fountain clock

Atomic clocks are the most accurate time and frequency standards known
(see [Sullivan et al., 2001] for a review). They use an atomic resonance
frequency as the timekeeping element. The radio frequency from a short-
time very stable source is synthesized in a frequency chain and tuned near
the resonance of a two-level atom. The atomic resonance curve is probed
and used to stabilize the source frequency to the peak of the resonance. The
narrower the resonance curve the more precise the clock will work. Since
1967, the second is defined as the duration of 9 192 631 770 periods of the
radiation corresponding to the transition between the two hyperfine levels
of the ground state of the 133Cs atom. Since both levels involved do not
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decay, the width of this transition is determined by the time the atoms spend
in the radio-frequency interaction zone. The method proposed by Ramsey
[Ramsey, 1990] contributed a major improvement to the clock performance.
In Ramsey’s method the microwave excitation occurs in the two spatially
separated zones, that are driven in phase (Fig. 1.4 a) ). The width of
the resonance is inversely proportional to the time T the atoms need to
cross the area between the two zones. In modern clocks with the fountain
geometry (Fig. 1.4 b) ) there is only one microwave cavity and the Ramsey
excitations are separated temporarily rather than spatially. Laser cooled
atoms are launched upwards and they cross the interaction zone twice, once
on the way up and once on the way down.

Cesium- and rubidium-fountain clocks belong nowadays to the most ac-
curate frequency standards. The best fountains have a relative frequency
instability of only a few parts in 1016 [Santarelli et al., 1999]. The separation
time T between the two excitations is up to 0.7 s and the resonance linewidth
is about 1 Hz [Sullivan et al., 2001]. T increases only as the square root of
the fountain height H. Therefore to reduce the clock linewidth by one order
of magnitude one would have to construct a fountain with a height of 100
m, which is unrealistic with respect to some technical aspects such as com-
pensation of the residual electromagnetic fields. In space, on the other hand,
separation times T of several seconds could be easily realized with a simple
and compact device giving the resonance width of 0.05 Hz [Laurent et al.,
1998].

Another point is that for the fountain frequency standards the trans-
verse temperature of the atoms is a key parameter. During the flight of the
atoms through the device, a large fraction of them (usually 90%) gets lost
before they return to the detection region (Fig. 1.4 b) ). In contrast, the
wavefunction of a Bose-Einstein condensate spreads much slower and nearly
100% of the initial number of atoms can still be visible after 1 s of expansion
(Fig. 1.7). Due to their high densities, the condensates suffer from the colli-
sional level-shift and therefore have not been used in the atomic clocks so far.
However, after several tens of ms, the density of the expanding condensate
decreases to a level that is comparable to that in a fountain clock based on
thermal atoms. Moreover, the collisional shift in Rb is 50 times smaller than
in Cs [Sortais et al., 2000]. This makes the Rb-BEC a potential candidate to
drive the future clocks in space with separation times T of several seconds.

1.4.2 Atom interferometers
Atom interferometers use most commonly optical fields to coherently split
and recombine de Broglie matter waves. In the particle picture, each atom is
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Figure 1.5: Scheme of a basic Mach-Zender type atom interferometer in
the absence of gravity

placed into a superposition of two momentum states, that separate spatially
in time. Each of these states accumulates a quantum-mechanical phase. If
they are brought back together, the phase difference between the two arms
of the interferometer leads to the occurrence of an interference pattern.

Figure 1.5 shows schematically a common interferometric sequence. The
Raman two-photon transition transfers the atom to the other internal ground
state and simultaneously changes the momentum of the center-of-mass of the
atom’s wave function. This process is coherent and can be performed with
any efficiency between 0 and 100% depending on the duration of the Raman
pulse. In particular the π

2 (π) pulse changes the atomic state with 50% (100%)
probability and thus acts as a beam splitter (mirror). A combination of
π
2 −π−

π
2 pulses forms a basic Mach-Zender interferometer. At the end of the

sequence the probability to find the atom in one of the states depends on the
phase difference ∆φ which, among other things, depends on the gravitational
acceleration g and the square of the time separation T between the Raman
pulses:

∆φ = m

~
vrecgT

2 (1.5)

with the atomic mass m and the photon recoil velocity vrec.
Atom interferometers do not merely demonstrate the wave nature of mat-

ter. Due to their unprecedented sensitivity to external forces, they are widely
used as inertial sensors in a variety of measurements, whose accuracy is com-
parable to, or better than the competing measurements using macroscopic
objects. Currently the best known interferometric measurement of g has been
performed with an absolute uncertainty of ∆g/g ≈ 3×10−9 after one minute
of integration time and 1× 10−10 after two days [Peters et al., 1999, 2001].

The geometry of the cold atoms gravimeter resembles that of the fountain
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clock - the atoms are launched vertically - and thus, similar restrictions are
put on the maximum height of the setup. Therefore, the interrogation time
T is limited by the free fall of the cloud in the vacuum tube. Since the
sensitivity of an interferometric measurement scales with the square root
of the number of detected particles, low density of the expanding cloud is
also a limiting factor. In microgravity T could be easily increased to a few
seconds gaining two orders of magnitude in the sensitivity. Nevertheless, it
will still be possible to detect the atoms due to much slower expansion of the
ultra-cold samples achievable in space.

1.4.3 Benefits for the fundamental research
Two great theories of 20th century, the quantum mechanics and the general
relativity, have no common ground: there has been no successful quantiza-
tion theory of gravity so far. Almost all modern theories searching for the
unification of gravitation with the three other fundamental interaction types,
assume violations of Einstein’s equivalence principle (EEP). Some theoretical
studies [Lämmerzahl, 2006; Damour and Polyakov, 1994] predict these vio-
lations to be in the range 10−13 to 10−21, which could be measurable in the
near-future experiments. This motivates for trying to improve the accuracy
of various experimental tests of EEP by several orders of magnitude.

EEP, which is a foundation of the general relativity, includes the local
position invariance stating that in all local freely falling frames, the outcome
of any nongravitational experiment is independent of where and when in
the universe it is performed. One consequence of this statement is the time
constancy of all nongravitational fundamental constants, such as the fine
structure constant α. Another implication is the gravitational redshift of the
clock frequency ∆ν/ν0 = ∆U/c2, where c is the vacuum speed of light and
∆U is the difference in Newtonian potential between the actual location of
the clock and a reference value for which the clock frequency is ν0. This
shift should be independent of the atomic species involved as a reference
in the clock. Finally, the local position invariance imposes that all bodies,
regardless of their internal composition, fall in the gravity with the same
acceleration. This effect, probably the most familiar issue of the EEP, is also
known as Einstein’s weak equivalence principle (WEP) or as the equivalence
of the inertial and the gravitational mass.

All three above mentioned consequences of the EEP have come under
precision tests searching for a tiny deviations from Einstein’s predictions. To
give a few examples, the analysis of the Oklo natural nuclear reactor showed
that two billion years ago α did not differ from the present value by more
than a few parts in 10−7 [Damourb and Dyson, 1996]. A similar upper bound
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on a possible fractional time variation of the quantity (µRb/µCs)α−0.44, where
µRb,Cs are the magnetic dipole moments of rubidium and cesium respectively,
has been measured by comparing the hyperfine frequencies of 133Cs and 87Rb
using atomic fountain clocks [Marion et al., 2003]. On the other hand, ob-
servation of the spectra of distant quasars indicates that α differed in the
early universe from the present value by (−7.2 ± 1.8) × 10−6 [Webb et al.,
2001]. This until now unexplained discrepancy could be further explored
with high-precision clocks in space.

Measurements of the gravitational redshift can also benefit from enhanced
accuracy of the space clocks. The accuracy of atomic clocks has recently
improved to the point at which it has become possible to measure the gravi-
tational redshift on Earth over an altitude of one meter. The best up-to-date
redshift measurement has been performed in 1976 with an H-maser by the
NASA Gravity Probe A rocket [Vessot and Levine, 1979; Vessot et al., 1980].
Predictions of the general relativity have been confirmed at the 2×10−4 level
of accuracy. In another experiment [Bauch and Weyers, 2002] a cesium foun-
tain has been compared to an H-maser in a varying gravitational potential
caused by the Earth’s annual elliptical motion around the sun. A possible
frequency variation of the two standards has been estimated to be less than
2× 10−5∆U/c2.

Since the famous drop attempts of Galileo Galilei in the late 16th century,
the weak equivalence principle has been most commonly tested with macro-
scopic objects including celestial bodies. Laser lunar ranging [Williams et al.,
2004] provides currently the most sensitive test of the WEP with the precision
of 3 × 10−13. An even more precise test is planed within the STEP mission
(Satellite Test of the Equivalence Principle) [Sumner, 2004]. This cryogenic
instrument will contain four pairs of macroscopic proof-mass cylinders freely
falling inside a satellite. STEP aims at 1 part in 1018 sensitivity.

However, unprecedented precision of atom interferometers will soon lead
to laboratory tests of general relativity at levels exceeding those reached by
macroscopic bodies and astrophysical observations. One kind of such tests
is basing on a comparison of the effect of gravity on macroscopic bodies
and on single atoms. So far the most precise measurement of this kind
has been performed by A. Peters and S. Chu [Peters et al., 1999, 2001].
The authors measured the difference between the value for g obtained by a
falling corner-cube optical interferometer and atomic Cs interferometer to be
(7± 7)× 10−9g. Another sort of experiments deals with microscopic objects
only. In an interferometric experiment done by the group of T. W. Hänsch
[Fray et al., 2004] the gravitational acceleration of the two isotopes 85Rb and
87Rb was compared, yielding a difference ∆g/g = (1.2 ± 1.7) × 10−7. In
the same experiment a free fall measurement of atoms in two different spin
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states was performed, giving a result of ∆g/g = (0.4±1.2)×10−7. The most
promising experiment of this kind has been recently proposed by the Stanford
group of M. Kasevich [Dimopoulos et al., 2007]. With the worldwide highest
atom interferometer (H ≈ 10 m, T = 1.34 s) it should be possible to initially
test the equivalence principle to 1 part in 1015 and 1 part in 1017 in the near
future. Interferometers in space could further break these limits.

1.5 Existing cold atom platforms in micro-
gravity

1.5.1 Experiments in the parabolic flights
The first cold atoms experiment under the condition of reduced gravity is
dated to 1993 by Lounis et al. [Lounis et al., 1993]. The authors observed
cesium atoms released from a magneto-optical trap and ballisticaly expand-
ing for 0.2 s. This simple experiment demonstrated that the fragile optical
equipment for the laser cooling can be constructed portable and capable of
being used under high-vibration conditions. The free falling reference was
provided by a jet plane executing parabolic flights. During such a flight the
gravity level is reduced to less than 2 × 10−2 g for about 20 s. Up to 30
successive parabolas can be made during one flight.

Another French collaboration I.C.E. (Interférométrie Cohérente pour l’Es-
pace) aims at the construction of an atom interferometer for inertial sensing
in microgravity [et al., 2006a]. A compact and transportable apparatus has
been designed to be used during the parabolic flights. A mixture of quantum
degenerate gases, bosonic 87Rb and fermionic 40K will be trapped in a crossed
optical dipole trap. Subsequently a series of Raman light pulses will be
implemented to form the beam splitters and mirrors for the matter wave
interferometer. The I.C.E. interferometer should serve for the acceleration
measurements. Currently the lasers and the vacuum system are under tests
[et al., 2006a]. Acceleration fluctuations (vibrations) of up to 2×10−2 g during
the parabolic flight have been identified as the main drawback limiting the
sensitivity of the interferometer. Therefore implementation of a vibration-
isolation system is required.

1.5.2 ACES / PHARAO
ACES: Atomic Clock Ensemble in Space is a project selected by the Euro-
pean Space Agency (ESA) to fly on the International Space Station (ISS).
The payload of ACES includes two atomic clocks: a hydrogen maser and a
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cold cesium atom clock PHARAO (Projet d’Horloge Atomique à Refroidisse-
ment d’Atomes en Orbite). The relative frequency stability of the PHARAO
clock on board the ISS is expected to be better than 10−13 for one second
measurement time and 3× 10−16 for one day. Target accuracy is 10−16.

The goal of the ACES mission is to operate the two kinds of atomic clocks
and to make a direct frequency comparison between them on board the ISS.
Moreover, frequency comparison between PHARAO and the ground clocks
should be performed with a relative accuracy of 10−16, a factor of 100 better
than the best current GPS measurements. These features will give rise to
increased precision of some fundamental physics test. The gravitational red-
shift, for example, will be measured with a 3×10−6 accuracy. This is a 25-fold
improvement compared to the measurement of the Gravity Probe A mission.
Another scientific objectives of ACES include the search for a possible time
variation of the fine structure constant as well as an improved test of special
relativity. For a review of the ACES mission see reference [et al., 2001].

Concerning the technology readiness for the operation in microgravity,
PHARAO is up-to-date the most advanced among the cold atoms projects
for space. The satellite version of PHARAO, developed by the French Space
Agency (CNES) has entered the industrial development in June 2001. The
clock is currently being characterized on the Earth and tested in the reduced
gravity environment of the parabolic flights. The details of design and the
first test results of the PHARAO clock can be found in reference [et al.,
2006b].

1.5.3 QUANTUS
The QUANTUS (Germ.: Quanten Gase unter Schwerelosigkeit) project joined
the space-oriented cold atom research community in spring 2004. The mem-
bers of the collaboration are the Institutes of Physics from the Universities of
Hannover, Ulm, Hamburg, Bremen (ZARM), and the Humboldt University
of Berlin, as well as the Max-Planck Institut für Quantenoptik in Garching.
The project is supported by the German Space Agency (DLR) with funds
provided by the Federal Ministry of Economics and Technology (BMWi) un-
der grant number DLR 50 WM 0346.

Targeting the long-term goal of studying cold quantum gases on a space
platform, we currently implemented a 87Rb BEC experiment under micro-
gravity condition at the drop tower facility of the Center of Applied Space
Technology and Microgravity (ZARM) in Bremen. The Bremen drop tower
offers a significant compensation of the Earth gravity down to the 10−6 g
level. Duration of microgravity is 4.5 s in the drop-mode and it can be
doubled when using the catapult. This time is fairly enough for prelimi-
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Figure 1.6: The first BEC realized in mi-
crogravity. Absorption image taken after
16 ms TOF. Color scale represents varia-
tion in the optical density and the lower
graph is integrated optical density along
the vertical axis. The condensed part is
fitted with an inverted parabola (green)
and the residual thermal background with
the Gaussian (cyan). From the fit we read
N ≈ 6000 condensed atoms.

nary experiments aiming at the preparation and subsequent observation of
the ultra-cold freely falling matter waves. The possible free expansion time
of up to 7 seconds represents a gain of factor 100 compared to earthbound
experiments.

Within 3 years from the beginning of the project we have designed, built
and extensively tested a compact and robust BEC setup suitable for the op-
eration in the drop tower. Special challenges in its construction were posed
by a low volume of the drop capsule (<1 m3) as well as critical vibrations
during capsule release and peak decelerations of up to 50 g during recapture
at the bottom of the tower. All mechanical, optical and electronic compo-
nents have thus been designed with stringent demands on miniaturization
and mechanical stability. Additionally, the system provides remote control
capability as it is not manually accessible during the drop. To the best of our
knowledge the setup described in chapter 2 is, up-to-date, the only portable
BEC apparatus worldwide.

For the sake of chronological completeness, the first laboratory Bose-
Einstein condensation with the Quantus drop capsule was realized in Febru-
ary 2007. In that year in October we dismounted the setup almost completely
and moved from Hannover to Bremen. Just one day after, we were able to
reproduce the results from Hannover, which can also be seen as a kind of
world record in the speed of a complete rearrangement of an quantum op-
tics experiment. This demonstrates the high flexibility and reliability of our
hardware.

On 06.11.2007 we succeeded in the first realization of the BEC in micro-
gravity (Fig. 1.6). Since that time we have performed over 160 successful
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Figure 1.7: Absorption images of the BEC for TOFs 50, 100, 500 and 1000
ms.

drops. The experiment has been optimized to increase the number of atoms
in the BEC to roughly 104. The trap steepness has been systematically
reduced so that during the last drop campaign we worked with the mean
trapping frequency ω̄ = 2π×10.9(±1) Hz. Note that this trapping frequency
is not available in any earthbound experiment without levitation. Finally,
we increased the time of free evolution to the unprecedented 1 second! (Fig.
1.7). After 1 s the size of the BEC reaches 1 mm with the peak density
3 × 107 cm−3. By an average expansion speed as low as 1 mm/s, all con-
densed atoms are expected to remain within the view field of the camera for
5 s. However, further increasing of the expansion time is currently limited
by the low initial number of atoms in the condensate and a poor signal to
noise ratio by the detection. The work to reduce the trapping frequencies to
the sub-Hz regime is currently in progress.

1.6 Composition of this thesis
The results described in this thesis is an effect of a collaborative effort of the
whole QUANTUS team. The author’s contribution to the teamwork includes
the design, assembly, characterization and drop tower tests of the complete
laser system, including the relevant electronic components. After the com-
pletion of all individual components of the experimental setup the author
took actively part in their integration into the drop capsule. Afterward he
assisted by the most relevant project-milestones, like the generation of the
BEC in laboratory, moving the setup to Bremen and operating it at the drop
tower, finally by the first realization of the BEC in free fall. Furthermore, cal-
culation and characterization of the time dependent trapping potential was
done by the author. Simulation of the time evolution of the Boes-Einstein
condensate wave function in this potential followed in close cooperation with
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the theoretical group in Ulm.
The experimental setup is described in detail in chapter 2. Since the drop

tower environment is to a large extent similar to that of a space platform,
special emphasis is put on the strict requirements on the experiment to make
it drop-tower-qualified.

The central part of the setup is the magnetic micro trap (atom-chip). Its
principle of operation, characteristic of generated magnetic field and possible
design modifications are the issues of chapter 3.

Chapter 4 contains a complementary, quantitative discussion of the re-
sults. It begins with a theoretical treatment of the time dependent evolution
of the condensate wave function. An analysis of the time variation of the
trapping potential, which drives the evolution of the condensate, follows. Fi-
nally, a detailed analysis of the result sketched in figure 1.7 is given in that
chapter.

Last, the near future perspective including both further steps with the
existing setup and the next generation of the Quantus experiment is briefly
illuminated in chapter 5.



Chapter 2

Cold atom experiment at the
Drop Tower in Bremen

2.1 The drop tower Bremen
The Bremen drop tower is a facility of the Center of Applied Space Technol-
ogy and Microgravity (ZARM1) at the University of Bremen. The research is
concentrated mainly on the investigation of fluid mechanics phenomena under
microgravity conditions and questions related to space technology. Within
the scope of QUANTUS, the first quantum physics experiment at ZARM, the
properties of a freely falling Bose-Einstein Condensate have been regularly
investigated since November 2007.

The tower has a total height of 145 m and provides the possibility to drop
experiments inside an evacuated steel drop tube (Fig. 2.1) with an altitude of
over 100 m. This allows for approximately 4.7 s free-fall time, which can be
doubled if one launches the experiment with a catapult. There are two basic
reasons for evacuation of the drop tube. The first is to reduce the air friction
during the drop. Second, friction in the deceleration container leads to the
accumulation of electrostatic charge on the cover of the capsule. The presence
of oxygen could lead to ignition and consequently to a flame. Evacuating the
tube takes 2 hours on average and is one of the main factors limiting the
repetition rate of the experiment to 3 drops per day. Weightlessness (or
zero-g) is only an idealized state that does not exist. In fact any experiment
is exposed to residual accelerations: those induced by the mass distribution
of the experiment itself, and those caused by the residual vibrations of the
experimental apparatus. The residual accelerations (microgravity quality)
during the flight are as low as 10−6 to 10−5 g in the acoustic Fourier frequency

1Germ.: Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation
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Figure 2.1: Cross-section of the drop tower in Bremen (figure from reference
[Dro, 2007]).

range 0-500 Hz (Fig. 2.2). The velocity dependent DC deceleration caused
by air friction is of the order of 10−5 g at the end of the flight (measured
at the residual pressure in the drop tube of <20 mbar [Sellig, 2007]). This
µ-g level is the best one amongst the microgravity facilities and is reached
already after 1.5 s after capsule release or after 2 s after catapult launch (for
a more detailed analysis of the acceleration in the capsule see the Drop Tower
Bremen User Manual [Dro, 2007]).

At the bottom of the tower the freely falling drop capsule has a velocity
of 166 km/h when it is captured in a deceleration unit. The deceleration
container has a height of 5 m and is filled with polystyrene pellets. Despite
of the macroscopic (5 mm) diameter of the granulate, the dynamics of the
capturing process resembles that of submerging in a viscose fluid. The mea-
sured acceleration in vertical direction is shown in figures 2.3 and 2.15. The
duration of the impact is 200 ms with an average deceleration value of ap-
proximately 25 g. The peak value of the impact deceleration reaches 50 g and
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puts one of the most stringent requirements on the mechanical stability of the
experimental setup. Note also the residual vibrations at the moment of cap-
sule release (at t = 0). The release mechanism has been designed and revised
over the years in order to achieve a smooth 1 g - 0 g transition. Nevertheless,
the gravitationally induced mechanical tension of the composite elements of
the drop capsule is released in microgravity. This excites eigenoscillations of
the capsule elements (mainly flat payload platforms) which might affect the
stability of the laser system.

Figure 2.2: Time dependent Fourier spectrum of the residual acceleration
(microgravity quality) inside of a falling capsule (figure from reference [Dro,
2007]).

Figure 2.3: Acceleration in the z−direction in units of g measured inside
of a falling capule
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2.2 Requirements on the experiment
The long-term goal of the QUANTUS collaboration is to establish an ex-
perimental platform in space to allow the investigation of ultra-cold quan-
tum matter in free fall for unlimited time. The drop tower environment is
similar to that of a space platform in several aspects. In particular, strict
requirements concerning the limited volume, low power consumption, and
high mechanical stability of the components have to be fulfilled. Thus, spe-
cial technical challenges in the construction of the experimental setup make
it different from common earthbound systems to a large extent. In detail, as
specified in [Vogel et al., 2006], the following points have been crucial for the
design of all mechanical, optical, and electronic modules:

• Miniaturization Optics for a common laboratory BEC experiment
usually fills the area of the whole optical table. Roughly the same space
above the table is required for the electronics. In contrast, our setup
has to fit into the drop capsule, the volume of which is less than one
cubic meter (Fig. 2.4 a) ) with a surface of a single payload platform
of 0.36 m2 (Fig. 2.4 b) ).

Figure 2.4: a) Two available versions of the drop capsule and b) the payload
platform (figures from reference Dro [2007]).

• Low mass In all space missions weight is an important factor in terms
of launch costs. The drop capsule can carry a maximum payload of
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Table 2.1: Dimensioning of the drop capsules

parameter: \ capsule version: short long catapult
stringer length [mm] 1545 2310 1342
max. payload height [mm] 980 1730 950
total area of experiment-platform [m2] 0.36 0.36 0.36
base structure incl. batteries and computer [kg] 110 110 122.7
top lid plate [kg] 36 36 28.2
vacuum sealed cover incl. clamping rings [kg] 32 54 38.5
4 stringer [kg] 42 60 36.6
nose cone incl. connection rod [kg] 6 6 10.2
1 experiment-platform incl. brackets [kg] 15.2 15.2 15.2
capsule net weight [kg] 226 266 236.2
capsule gross weight [kg] 500 500 400
max. payload mass [kg] 274 234 163.8

234 kg. All masses and dimensions of the drop capsules (including the
catapult version) are summarized in table 2.1. Note that more stringent
demands on size and weight are put on the catapult capsule.

• Low power consumption Electrical power for the experiments in the
drop tower is supplied from batteries placed at the bottom of the drop
capsule. They operate at 28 V DC voltage and can provide a total
energy of 0.56 kWh with a peak power of about 3 kW. Obviously, there
are even stronger energy constraints on the space platform.

• High mechanical stability Residual vibrations of the platforms at
the moment of capsule release can be critical for the laser frequency
and light intensity stability. Moreover, all the components used have
to withstand the peak deceleration of up to 50 g during impact and
catapult launch. Due to the maximal drop rate of three times per day,
there is only less than one hour for likely corrections and readjustment
of the setup between the flights. Therefore, a permanent misalignment
of the experiment after each drop should be avoided. Fulfilling this
requirement would also be important in future space missions because
of the presence of violent shocks and vibrations during the launch phase.

• Thermal insensitivity Whilst the drop or launch take place in the
evacuated drop tube, the capsule is vacuum-tight and there is normal
pressure inside of it. Most of the electronics remain turned on during
drop tube evacuation, which results in a temperature increase in the
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upper parts of the capsule of up to 4 degrees within 2 hours. The com-
ponents of the experiment which are highly sensitive to temperature
change (e.g. the optical rack with fiber docks) are therefore required
to have connection to water cooling circuit.

• Fast BEC preparation In order to damp the effect of the above men-
tioned vibrations, the atoms are kept in the non-conservative magneto-
optical trap (MOT) during the capsule release and 1 s thereafter. Thus,
all following cooling phases, in particular the evaporation in the mag-
netic trap, have to be faster than the total drop time of about 4.7 s
minus the free expansion time of up to 1 s.

• Remote control Two hours before the drop, while the drop tube is
evacuated, the experiment is accessible only via remote control. In
particular, one has to be able to lock the lasers to an adequate atomic
transition without manual access.

In the following section the experimental setup will be described in detail,
emphasizing how it addresses the above issues.

2.3 Quantus experimental setup
Nowadays Bose-Einstein condensates can be nearly routinely produced in
many optical laboratories and a number of different experimental techniques
are being extensively discussed in the literature [Metcalf and van der Straten,
1999; Phillips, 1998; Ketterle et al., 1999]. The main requirements are, how-
ever, similar. The most important are: good thermal decoupling from the
environment using contact-free storage in ultra-high-vacuum chambers (typ-
ically better than 10−10 mbar) and a sophisticated two-stage trapping and
cooling process. The latter begins with precooling using Doppler- and sub-
Doppler laser cooling in a magneto-optical trap down to the temperatures
in the µK range. Subsequently, the cold atomic sample is transferred to a
conservative trapping potential (magnetic or optical) and cooled further by
evaporative cooling.

2.3.1 Drop capsule overview
The QUANTUS drop capsule with its components is depicted in figure 2.5.
The heart of the experiment is the vacuum chamber which houses the mag-
netic chip-trap. The uppermost platform is occupied by the complete laser
system (including the laser electronic rack) and the remaining space is tightly
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Figure 2.5: Quantus drop capsule with its composite modules.

Figure 2.6: Vacuum chamber with magnetic coils and fiber telescopes
rigidly attached to the chamber body (left drawing courtesy of Tim van
Zoest [van Zoest, 2008]).

filled with control electronics. It is worth to mention that QUANTUS is the
heaviest experiment ever dropped at ZARM. The total weight of the drop
capsule slightly exceeds the maximal allowed mass of 500 kg.

2.3.2 Vacuum
The atoms are trapped inside of a non-magnetic, stainless steel, ultra high
vacuum chamber, which is kept at ultra low pressure of less than 10−10 mbar
by an ion getter pump (25 l/s) and a titanium sublimation pump. It is
important, that there are no moving elements inside either of the pumps
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which could be damaged during deceleration of the capsule. In particular,
to avoid long-run loosening, all screws inside of the pumps have been spot-
welded. Moreover, high voltage elements of the ion pump are fastened with
mounts specially designed for operation in the drop tower, that prevent an
eventual short circuit of the electrodes. Also, special attention has been
paid to the mounting of the filaments of the titanium pump. These are
mounted vertically so that they are less sensitive to torques during capsule
deceleration.

To minimize mechanical strains that could lead to leakage, there is only
a single suspension of the vacuum chamber inside the drop capsule. All pe-
ripheral components like magnetic coils, CCD-camera telescopes and fiber
ports are rigidly attached to the steel body of the vacuum chamber, giv-
ing maximum stability and minimizing possible sources of relative misalign-
ment (Fig. 2.6). A detailed description of the vacuum system, including
technical drawings of the chamber and characteristics of the Helmholtz-coils
have been given in the PhD thesis of Tim van Zoest [van Zoest, 2008]. A
drop tower vacuum-tightness test has been described in reference [Könemann
et al., 2007].

2.3.3 Chip trap and mirror MOT

Figure 2.7: a) A common 6-beam MOT and b) 4-beam mirror MOT. The
two counter propagating beams perpendicular to the picture plane are not
shown. σ+/σ− refer to the light helicity, not the polarization.

In order to meet the need of short evaporation times and low power
consumption, we use a magnetic micro-trap on a chip [Reichel et al., 2001;
Folman et al., 2002]. Its operating principle, the architecture of the strip
lines as well as the generated magnetic fields are described extensively in
chapter 3. At this point it is worth to point out the key role of the chip in
magneto-optical trapping and pre-cooling of the atoms before the magnetic



26

trap is turned on. An ordinary magneto-optical trap consists of 6 orthogo-
nal, counter-propagating, circularly polarized laser beams, that intersect at
the minimum of a quadrupole magnetic field generated by a pair of macro-
scopic anti-Helmholtz coils (Fig. 2.7 a) ). However, this configuration is not
applicable in the case of a chip-trap since the chip substrate is not opaque.
Instead, the chip surface features a highly reflective dielectric coating and
reflects two of the diagonal beams (Fig. 2.7 b) ). σ+ circularly polarized
light changes into σ− once reflected from a mirror. Therefore in the vicinity
of the chip surface, there are pairs of counter-propagating beams with the
same helicity but with orthogonal circular polarization seen by the atoms.
The quadrupole field for the MOT can be generated either by the external
anti-Helmholtz coils or a superposition of an external bias field and a field
that is created from a current through the U-shaped wires on the chip (Chap.
3).

2.3.4 Laser system
Requirements on the laser system

In order to keep the setup as simple as possible, we trap 87Rb, which, like
other alkali atoms, has a simple laser cooling scheme (Fig. 2.8) for which
laser diodes are commercially available. Furthermore, a relatively high ratio
of elastic to inelastic collision rate in 87Rb is advantageous for evaporative
cooling.

For cooling and trapping 87Rb atoms in a magneto-optical trap infrared
laser light (λ = 780.2 nm) is required to drive the D2 transition 52S1/2 −→
52P3/2. All frequencies used in the experiment can be divided into two classes
(blue and green arrows in Fig. 2.8) separated by the hyperfine splitting of the
87Rb ground state (6.8 GHz). For atoms with a natural transition linewidth
Γnat, the low intensity theory of Doppler cooling in one dimension yields an
optimal detuning of the cooling laser δ that minimizes atomic temperature:
δ = −Γnat/2 [Metcalf and van der Straten, 1999]. In 3D and for light sources
with a spectral width comparable to Γnat the optimal detuning is greater than
Γnat/2. Besides, with increased detuning a larger fraction of atoms from the
thermal background can be caught. Also the trap volume increases with δ.
Thus, in practice, the optimal detuning δ is of the order of 2-3 Γnat and its
value has to be found empirically as a compromise that gives sufficiently low
temperature for a still satisfactory number of atoms. In order to fulfill this
demand the spectral linewidth of the laser has to be at least as narrow as
Γnat (6 MHz for the D2 transition in rubidium) and the long-term frequency
variance should be much less than that. As shown in reference [Chen et al.,
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Figure 2.8: Hyperfine splitting of the D2 line in rubidium (all frequencies in
MHz) and laser transitions (colored arrows) required for the BEC experiment.

2000] the number of trapped 87Rb atoms in a MOT decreases by a factor of
1.7 when the linewidth of the cooling laser approaches 10 MHz.

A total power of about 50 mW of the cooling light is needed at the atom
cloud, while a few mW are sufficient for the other transitions.

Full control over laser frequency and intensity at the moment of capsule
release and during the flight are critical parameters that determine whether
a satisfactory number of atoms can be trapped at a temperature that is low
enough to efficiently load the magnetic trap.

Laser system overview

Our laser system is schematically shown in figure 2.9. It consists of a master
laser stabilized to an atomic transition, a MOPA amplifier (Master-Oscillator
Power Amplifier), a repumping laser (both frequency-offset locked to the
master laser), and a power-distribution and -control module with acousto-
optic modulators (AOM-module). Optical connections between those mod-
ules and with the vacuum chamber are realized exclusively with single mode
polarization-maintaining optical fibers.
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Figure 2.9: Schematic of the laser system. The red lines are light paths
and the black are electronic connections.

All mounts for optical elements have a beam height of 20 mm and were
designed by us with a special emphasis on mechanical stability. The majority
of them are not adjustable. Exceptions are the mirror holders in front of the
fibers (Fig. 2.10 right) and beat photodiodes as well as the mirrors used to
superimpose two laser beams. In contrast to most commercially available
spring-based adjustable mounts, our ultra-stable stainless steel construction
makes use of flexure metal sheets for tilting the mirror.

The laser modules are placed in a stable and robust housing (210×190×
60 mm) made of stress-free aluminum. The three lasers together with the
AOM-intensity-control module are integrated into a frame assembly with
dimensions chosen to be compatible with a standard 19” electronic rack (Fig.
2.10 left and middle). The laser system including electronics has a total
weight of about 45 kg and fits the area of one platform in the drop capsule.

Figure 2.10: Mechanical mount of the laser system. Optic (left) and elec-
tronic (middle) racks have the standard width of 19”. Mounts for optics with
the beam height of 20 mm (right).
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DFB diode

For the sake of mechanical stability, we have intentionally excluded the use of
extended cavity diode lasers (ECDL) which are otherwise commonly used for
laser trapping. Instead, we drive our laser system with distributed feedback
(DFB) laser diodes [Caroll et al., 1998], which have an intrinsic grating in the
active semiconductor area. Commercially available DFB diodes from Eagle-
yard (EYP-DFB-0780-00080-1500-TOC03-0000) mounted in a TO3 housing
with an internal Peltier element fit well our requirements regarding com-
pactness. Moreover, the diode’s emission linewidth is about the same or-
der of magnitude as the natural linewidth of the 87Rb D2 transition.2. The
linewidth was measured by beating the DFB laser with a spectrally much nar-
rower (< 100 kHz) ECDL laser. The beat signal was subsequently analyzed
with three independent methods: fast Fourier transform (FFT), phase-noise
analysis and with the use of a spectrum analyzer. An example of the latter
is shown in figure 2.11. From the Lorentz fit we obtain a spectral width
(FWHM) of 4.7 MHz. The other two methods are described in reference
[Schiemangk, 2007] in detail.

Figure 2.11: Power spectral density (PSD) of a DFB diode measured as a
beat signal with an ECDL laser. The resolution bandwidth of the spectrum
analyzer was 30 kHz and the sweep time 20 ms.

We stabilize the temperature of the diodes, and use only the current to
vary the wavelength. DFB diodes have an extremely wide mode-hop-free
operation range of more than 100 GHz, which greatly facilitates their use.

2The manufacturer guarantees a linewidth of less than 10 MHz
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Information on rubidium spectroscopy with DFB diode lasers can be found
in reference [Kraft et al., 2005].

MTS master laser

The master laser (left picture in figure 2.12) is stabilized to the atomic tran-
sition

∣∣∣52S1/2, F = 3
〉
−→

∣∣∣52P3/2, F = 4
〉
in 85Rb (Fig. 2.8). The choice of

this particular line is motivated by its largest transition strength among the
whole D2 spectrum. Moreover, a relatively high natural abundance (72.1%)
of the 85Rb isotope additionally enhances the signal. Light from the master
laser does not play any further role in the experiment other than serving as
a reliable frequency reference for all other required transitions.

The error signal for frequency stabilization is generated using modula-
tion transfer spectroscopy (MTS) [Shirley, 1982; Zhang et al., 2003]. Similar
as in frequency modulation spectroscopy (FM) [Bjorklund, 1979; Bjorklund
and Levenson, 1983; Supplee et al., 1994], a part of the laser beam (approx.
1 mW)is split into a weak probe beam and a much stronger pump beam
with an intensity that exceeds the saturation intensity of the transition. The
two beams counter propagate through the atomic vapor inside the glass cell
and the probe beam is detected after passing the cell using heterodyne detec-
tion. The resulting signal reveals the sub Doppler structure of the transition.
Whereas both beams (or only the probe) are modulated in the case of FM,
the pump beam only is modulated in the MTS technique. The modulation
is transfered to the probe beam in a nonlinear processes of modulated hole
burning and reflection from an induced population grating. The resulting
demodulated signal is free of a Doppler broadened background.

Phase modulation of the master laser is done with an electro-optic mod-
ulator (EOM) whose resonant frequency is 7.4 MHz. To avoid unwanted
interference of the probe beam with a residual back-reflection of the pump
beam, the probe beam is frequency shifted with an acousto-optic modulator
(AOM) by 2∆ = −80 MHz. This leads to a red shift ∆ of the laser frequency
relative to the atomic transition (Fig. 2.8)

MOPA

The MOPAmodule (right picture in figure 2.12) has been built by the QUAN-
TUS partner from Hamburg. It consists of a DFB diode that seeds a tapered
amplifier (TA, Eagleyard EYP-TPL-0780-01000-3006-CMT03-0000). This
TA emits a maximum light power of 1 W at an operating current of 3 A and
a maximal seed power of 50 mW. The outgoing beam profile is mode matched
to a Gaussian beam profile using a set of cylindrical lenses as described in
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Figure 2.12: MTS master laser (left) and MOPA module (right) with a
gauging stick from the Masterfood company.

reference [Wilson et al., 1998]. Nevertheless we achieve a maximum fiber
coupling efficiency of 40% only. Since TA is not operated at its absolute
maximum ratings and the fiber coupling is usually not perfectly aligned, we
typically provide 120 mW of cooling light at the output of the TA-fiber, which
is fairly enough for our purposes.

Repumping laser

In the early stage of the experiment we stabilized the repumping laser directly
to the repumping transition in 87Rb:

∣∣∣52S1/2, F = 1
〉
−→

∣∣∣52P3/2, F = 2
〉
.

For this purpose we used a Doppler-free dichroic atomic vapor laser lock
(DFDL) [Wasik et al., 2002]. Its advantage was a very simple construction
with a minimum number of optical and electronic components. However,
to generate a DFDL error signal retardation optics is required, which is
sensitive to temperature variations. Consequently, the long term frequency
stability was not satisfactory for drop tower operation (as already mentioned,
temperature in the drop capsule varies by up to 4 degrees). At the present,
the repumping laser is a single DFB diode coupled to a fiber (12 mW at the
fiber output) and offset-locked to the master laser.

AOM-module

Light from the cooling, the repumping and the master laser is provided to the
AOM-module (Fig. 2.13 and C.4) via optical fibers. Cooling and repumping
beams are superimposed, split into 4 beams of equal intensity3 (15 mW cool-
ing + 0.5 mW repumping) and coupled to the output fibers. Roughly 2 mW
of the cooling beam is pinched off for optical pumping to the |F = 2,mF = 2〉
state and detection of the atoms. Each of the 3 kinds of the output beams

3So far there has been no necessity to use active stabilization of the light power splitting
ratio, however this possibility is considered for the future catapult experiments
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Figure 2.13: AOM-module.

goes through an acousto-optic modulator (AOM, Crystal Technology, 3080-
125). The AOMs are driven with 32 dBm RF-power, which allows for 85%
efficiency of the first diffraction order. The RF-frequency is kept constant
(80 MHz)4, thus the AOMs are not used to frequency chirp the light. Rather
they serve as variable attenuators and fast switches for the light beams. Even
if the RF driving the AOMs is off, some residual light might be diffracted
and coupled to a fiber. This might give rise to heating of the magnetically
trapped condensate. To avoid this, there is a mechanical shutter mounted in
front of each outgoing fiber port.

Finally, inside the AOM-module the cooling and repumping beams are
superimposed with the light of the master laser and focused on fast photodi-
odes (Hamamatsu, G4176-03) to record the beat signals needed for the offset
lock.

Frequency-offset lock

Both cooling and repumping lasers are frequency-offset locked to the mas-
ter laser (Fig. 2.9). The idea behind an offset lock is to detect the beat
frequency between a reference laser (master) and a laser of interest, and to
keep it constant. This is done by converting a high frequency beat signal
into a voltage which feeds-back the laser’s frequency actuator (laser current
in a DFB laser or laser current and piezo voltage in an ECDL). Our two
offset lock assemblies differ in the way the beat frequency is converted into
voltage. In case of the cooling laser, we use a digital phase-frequency de-

4This aditional frequency shift must be considered when estimating the offset frequen-
cies.
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tector (Hittite HMC440QS16G) with an integrated programmable prescaler
(divider). The beat frequency is internally divided by 4 and compared to the
reference frequency generated by a 15 bit direct digital synthesizer (DDS, AA-
Opto-Electronics). The reference frequency is varied from 291.5 MHz for the
resonant detection, 297.25 MHz for the MOT up to 357 MHz for pumping
to the |F = 2,mF = 2〉 state. Both, detection and the optical pumping take
place in the presence of a magnetic field.

Frequency detection for the repumping laser is realized with the so called
“trombone”. After amplification, the beat signal (5.4 GHz) is split. One
half goes through an adjustable microwave phase shifter (P1506, ATM Inc.).
Subsequently the two signals are electronically multiplied (mixed) with a
double balanced frequency mixer. If the input frequencies are equal the
mixer acts as a phase detector. Its output DC voltage is proportional to
the sine of the phase difference of the inputs. This phase shift depends on
the input frequency to the trombone phase shifter and one can adjust it in
such a way that at the frequency of interest the phase difference is equal to
a multiple of π. In this case the output from the mixer is equal zero and
changes linearly for small frequency variations, thus it can be used to feed
back the laser.

Lock bandwidth

Figure 2.14: a) Schematic of the lock bandwidth measurement setup and
b) an example of the measurement with a lock bandwidth of 250 kHz.

Possible laser frequency disturbances during the release of the drop cap-
sule and at the impact are mainly of mechanical origin. This is because
residual back reflections (also stray light) from the surface of optical ele-
ments placed in front of the Faraday isolator may feed back the laser diode.
Critical elements mounted before Faraday isolator are for example the diode
housing window, collimating lens and the entrance window of the isolator
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itself. To give a numerical example, moving one window of a 5 cm long para-
sitic resonator by just 1 nm is enough to shift the laser frequency (at λ = 780
nm) by 8 MHz, which is more than Γnat in rubidium. Passive mechanical
stability at this level is hardly realizable. Therefore active stabilization of
the laser frequency has been designed with special emphasis on high gain
in the acoustic frequency range. The lock bandwidth has been measured
with a network analyzer (Fig. 2.14 a) ). The unity gain point is at 250 kHz
(Fig. 2.14 b) ) with the phase margin (not shown on the graph) below 180
degrees. Below 250 kHz the amplitude of disturbances is suppressed by a
factor increasing by 20 dB per decade.

Mini drop tower test

In order to test the sensitivity of the laser to vertical acceleration, a mini
drop tower assembly with a drop altitude of approximately 1 m has been
built in Berlin (Fig. 2.15 a) ). Test objects are fastened to a platform that
is identical to the standard ZARM drop capsule platform. In order to assure
high repeatability of experimental conditions, the platform is falling down
suspended with linear ball bearings to two high precision, stainless steel rods.
Deceleration is done by a 30 cm thick foam sheet. The height and softness of
the foam have been chosen such that the impact deceleration is comparable
to that in the ZARM drop tower (Fig. 2.15 b) ). As seen in figure 2.15 a),
the master laser in the laboratory test stays locked after an impact with the
vertical acceleration exceeding 45 g.

Figure 2.15: Laser lock test on the mini drop tower: a) z-acceleration
(black), error signal (red), and feed back (correction) signal (blue) during a
drop from 1 m height. The error signal does not change and the laser stays
locked. b) comparison of the z-acceleration of the mini drop tower, ZARM
drop tower impact, and that of the catapult launch.
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Drop tower test at ZARM Bremen

Figure 2.16: Drop tower test of the laser system: a) laser frequency dur-
ing capsule release; b) fiber coupling stability during the flight; c) long run
temperature stability of the TA power.

A dedicated test of the laser system stability has been carried out at
ZARM in Bremen. Graph a) in figure 2.16 shows the error signals of both
MTS and DFDL master lasers5 and of the offset lock during capsule release.
All three lasers remain locked and their frequency is not sensitive to residual
capsule vibrations. Figure 2.16 b) shows the stability of the fiber coupling
during the flight. In the moment of capsule release the intensity remains
stable, it drops by about 36% during recapture to finally reach its beginning
value. The latter indicates no need to readjust the fiber coupling after each
drop. The result of the long-run temperature sensitivity test of the TA
output power is shown in figure 2.16 c). For a typical temperature change
of 4 degrees in the drop capsule the output power of the TA drops by 13%.
Both, coupling of the seeding laser to the TA and coupling of the TA in the

5At the time the laser system was tested in the drop tower we were using DFDL to
lock the repumping laser. It has been later on replaced by the ”trombone” offset lock, but
the feedback electronic (lock-box) stayed unchanged.
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fiber are sensitive to the temperature and thus contribute to a decrease in
the output power. However, the test has been performed without connecting
the capsule to the water cooling circuit, thus 13% is regarded as an upper
limit of the slow power drift.

Catapult test

Figure 2.17: “Block laser”- catapult capable master laser concept.

The catapult facility at ZARM in Bremen can extend the microgravity
time up to 9 s. However, the acceleration that occurs at the launch of the
capsule is comparable to that at the impact (Fig. 2.18). This dramatically
enhances the demands on shock-insensitivity of the laser. As a part of the
preparation for the future catapult-launched cold atoms experiments, we
have built an ultra-stable prototype of the master laser. It is based on FM
spectroscopy with direct current modulation. In contrast to the present
lasers, where all optics is mounted on a flat planar base, the new block-like
construction (Fig. 2.17) has been optimized for maximum stiffness. Details
of the mechanical design can be found in reference [Schiemangk, 2007]). By
building this laser care has been taken to minimize any back reflections into
the laser diode (including stray light). In particular, we identified the back
reflection from the AR-coated window of the TO3 housing of the laser diode
to be the main drawback of the setup. Therefore we operate the laser with
diode-can open6. Moreover, the lock bandwidth has been increased to more
than 300 kHz by improvements in both the lock electronics and the generation

6To avoid water condensation, the diode is run at a temperature higher than the room
temperature.
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of the error signal. The latter involves optimizing the relative intensities of
the pump and probe beam in the Rb cell. On one hand, by low intensity
the amplitude of the error signal decreases. Moreover, the atom’s reaction to
variations in the laser frequency is slowed down due to the lowered optical
pumping rate. Higher intensity, on the other hand, leads to excessive power
broadening of the spectrum. We accept the power broadening of a few Γnat
in order to make the lock faster.

Due to some technical problems with the catapult facility, the block-laser
has not been launched yet and the next laser-test campaign is planed for
February 2009. However, the experiences gathered during the construction
of the block-laser have been implemented in one of the lasers that are already
in use in Bremen. This laser has been catapulted three times, once staying
locked during launch and after impact (Fig. 2.18).

Figure 2.18: The z-acceleration by the catapult launch (black), error signal
(red) and feed-back (correction) signal (blue). Constancy of the error signal
indicates that the laser stayed locked during the flight and after impact.

Detection

All information relevant for data analysis like the number of trapped atoms
or size and position of the cloud are extracted from the resonant absorption
imaging [Lye et al., 2002]. The detection beam, similar as the 4 MOT beams,
is provided to the vacuum chamber with a polarization maintaining optical
fiber and expanded to a diameter of 20 mm with a telescope arrangement (for
details of the telescope mount see [van Zoest, 2008]). Trapped or released
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from the trap atoms are illuminated with the collimated detection beam
with circular σ+ polarization resonant7 with the

∣∣∣52S1/2, F = 2,mF = 2
〉
−→∣∣∣52P3/2, F = 3,mF = 3

〉
transition in 87Rb. The intensity of the detecting

beam is 0.3 mW/cm2, which is much less than the saturation intensity of
rubidium. The atoms absorb a part of the resonant light, which is seen as
a shadow by the 12 bit CCD-camera chip (Hamamatsu, C8484-15G) placed
face to face with the detection beam. Despite the AR-coating of the imaging
optics, interference patterns like Newton’s rings, that significantly degrade
the picture quality, are unavoidable. In order to get rid of them, the image
of the atomic shadow is followed by a second one without atoms, but with
roughly the same interference pattern of the laser beam. Subtraction of
the two images cancels the laser intensity pattern. Denoting the intensity
distribution of the two captured images by A(x, z) and B(x, z) respectively
one gets:

A(x, z) = I0(x, z)e−O(x,z) +Noise

B(x, z) = I0(x, z) +Noise, (2.1)

where the laser beam propagates along the y-axis with the intensity distribu-
tion I0(x, z). O(x, z) is the optical density of the atomic sample and Noise
the constant level of thermal noise of the camera. The latter is measured by
simply taking a dark picture with all lasers off. From 2.1 one can determine
the optical density:

O(x, z) = ln

(
B(x, z)−Noise
A(x, z)−Noise

)
. (2.2)

The optical density is directly proportional to the atomic density n(x, y, z)
integrated along the y-direction:

O(x, z) = σ
∫ +∞

−∞
n(x, y, z)dy = σD(x, z), (2.3)

with a cross-section σ for atom-light interaction given by

σ = σ0

1 + 2 I
Isat

+ (2 δ
Γnat )

2 . (2.4)

The resonant cross-section is σ0 = 2.910−9 cm2, the saturation intensity
Isat = 1.67 mW/cm2 [Steck, 2008], I is the detection laser intensity and δ

7Detection takes place in the presence of a magnetic field, thus the Zeeman level shift
has to be taken into account for an estimate of the resonant frequency
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the detuning from resonance. In order to calculate the number of atoms N
one has to integrate D(x, z) over the picture area A:

N =
∫
A
D(x, z)dxdz = 1

σ

∫
A
O(x, z)dxdz. (2.5)

The integral 2.5 can be done in two ways. Numerically one can sum the
optical density Oi over all CCD pixels: N = ∑

i
Oia
σ
, where a is the area

of a single pixel. The second method is to make an explicit assumption
about the spatial shape of D(x, z) (a Gaussian distribution for thermal atoms
and an inverted parabola for the BEC) and to fit the assumed function to
the captured data. With the results of this fit one can easily calculate the
integral. Both methods have been implemented by us.

2.3.5 Drop capsule board computer
The experiment is controlled by two commercially available computers (Na-
tional Instruments) mounted in a compact PXI-chassis inside of the drop
capsule. Both of them are operating with a Real Time (RT) operation sys-
tem allowing for timing precision on a µs level. LabView routines (Virtual
Instruments - VIs), that are communication interfaces between the user and
the RT-hardware are loaded to the memory of the RT computer via WLAN
when the capsule is hanging at the top of the drop tower. One of the com-
puters belongs to the standard equipment of the drop capsule and is partially
used to control and trigger the capsule release process as well as to measure
and save some physical parameters before and during the drop (capsule pres-
sure and temperature, acceleration) [Dro, 2007]. The second computer serves
exclusively for controlling the Quantus experiment. In particular, three rel-
evant VIs run on it: one to lock the lasers before the experiment starts, one
to generate the actual experimental time sequence and the third to trigger
the camera and to capture absorption images. These three routines as well
as the data acquisition cards handled by them are described in detail in [van
Zoest, 2008].

2.4 Time sequence
In this section the timing of the experiment is described. It takes less than
15 s to run the whole experimental sequence once. During this time atoms
are captured from the thermal background and slowed down in successive
cooling stages (Tab. 2.2) culminating with the achievement of quantum
degeneracy. The way to produce the BEC in microgravity is the same as in
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the laboratory on the earth. Differences appear only after emergence of the
BEC and they concern the flatness of the final holding trap as well as the
time of free evolution (TOF) after turning the trap off.

2.4.1 Doppler cooling in the magneto-optical trap
Macroscopic MOT

Since laser cooling is for the present experiment a tool rather than a subject
of investigation, it will not be treated in detail here. A review of the theory,
different techniques and applications of the laser cooling can be found in
numerous textbooks, e.g. [Metcalf and van der Straten, 1999].

First, thermal background atoms are captured in the center of the mirror
MOT. As a source for thermal atoms we use a rubidium dispenser (SAES
Getters), that is operated at a current of 5.5 A. The trap consists of four
circularly polarized laser beams (Fig. 2.7) detuned from the resonance by
δ = 23 MHz, with a light power of 15 mW each and 2 cm beam diameter.
The beams intersect at the zero of the quadrupole magnetic field generated
by a pair of macroscopic anti-Helmholtz coils (blue in Fig. 2.6). With a
maximum current of 7 A, these coils can generate a magnetic field gradient
of 12 G/cm at the trap center.

Approximately 108 87Rb atoms at a temperature of 220 µK are loaded to
the MOT. Since the MOT loading time is approximately 10 s it takes place
before dropping the capsule. At this time the timing sequence is suspended
with the MOT loading still progressing. The further run of the sequence
is triggered by the acceleration sensor at the moment of the capsule release.
Subsequently the macroscopic MOT remains on in microgravity for one more
second. The reason for this extension of the MOT phase is to to let residual
atomic oscillations subside after the capsule release8 (Fig. 2.3). Moreover, by
varying this time slightly, we can precisely determine the height in the drop
tower at which the phase transition to BEC takes place. This is important,
because residual magnetic fields vary throughout the drop tower (Fig. 4.10).
These fields affect the parameters for the evaporative cooling and we have to
make sure that they are the same for each drop.

U-MOT

The next step is to transfer the atoms to the chip-MOT. Superimposing a
homogeneous magnetic field with the quadrupole field shifts the position of
the field minimum. By ramping the bias field in the y-direction from 0 to

8MOT is a nonconservative trap
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1.2 G within 20 ms (not shown in table 2.2) we move the cold atom cloud
towards the chip surface to the position of minimum of the U-MOT magnetic
field.

The U-MOT, or the chip-MOT is a magneto-optical trap for which the
quadrupole magnetic field is obtained by superposition of a homogeneous field
with a field of a microscopic U-shaped current conductor (the field of such
wire configuration is discussed in section 3.2.1). Turning off the macroscopic
MOT coils takes up to a few ms. During this time the magnetic field is
undefined. Therefore, to avoid unwanted ”kicks” we switch off the laser light
for 4 ms (not shown in table 2.2). At the same time the chip U-current of 2
A is turned on and the bias field had already been turned on during shifting
of the MOT.

Compared to the macroscopic coils, micro-fabricated wires on the chip
can generate much higher field gradients with much smaller current. The
position of the trap minimum is therefore better defined and can be controlled
more precisely. This is advantageous for loading the magnetic trap. On
the other hand, the capture volume of the chip trap is smaller so that it
cannot be effectively loaded directly from the thermal background. Rather,
loading with atoms precooled in a macroscopic MOT is required. The transfer
efficiency is thereby about 50% which results in approximately 5×107 trapped
atoms.

Finally, the U-MOT is shifted within 20 ms to the position of the mini-
mum of magnetic trap (not shown in table 2.2).

Figure 2.19: Fluorescence picture of 5×106

atoms trapped in the U-MOT. The structure
of the atom chip with the U-shaped wire can
be seen in the background.

2.4.2 Optical molasses
In the process of Doppler cooling the action of red detuned light on atoms
creates a viscous environment with velocity-dependent friction force (”a fly
in a honey jar”). Hence the process is also called optical molasses. A simple
model of Doppler cooling concerns two-level atoms and predicts a minimal
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achievable temperature of TD = ~Γnat/(2kB) also called the Doppler limit9.
Experimentally however one observes optical molasses with temperatures well
below TD [Lett et al., 1988]. The theoretical explanation of this phenomenon
[Dalibard and Cohen-Tannoudji, 1989] takes into account the multilevel Zee-
man structure of the atomic states involved in the cooling cycle and the
spatial dependence of the light polarization resulting from the superposition
of two counter-propagating laser beams. Thus cooling in an optical molasses
is frequently called polarization gradient cooling. The additional cooling
mechanism works at atomic velocities comparable to a few multiples of the
recoil velocity vR = ~k/m (with the atomic mass m and the wave number
of the laser radiation k). Thus it affects atoms that are much slower than
the Doppler cooling capture range Γnat/k. For these atoms the dependence
of the friction force on atomic velocity is steeper than in ”normal” Doppler
cooling.

In our molasses, the laser detuning is increased for 4 ms to δ = 29×Γnat,
the power of the trapping and repumping laser is reduced to 80% of their
MOT-values, and the magnetic fields and chip current are turned off. It is
important that no residual magnetic fields are present at the location of the
atoms. Despite of the µ-metal screening of the vacuum chamber, a residual
field of 0.1 G in the x-direction, 0.19 G in the y-direction, and 0.15 G in
the z−direction remains and has to be compensated with external coils.
With well optimized molasses we are able to capture 1.3 × 107 atoms at
a temperature of 18.4 µK. The corresponding phase-space density (ρps) is
6 × 10−6. For comparison, rubidium atoms from the thermal background
in our vacuum chamber (T = 300 K, p = 10−10 mbar) are characterized by
a phase-space density of 3 × 10−21. This illustrates what a powerful tool
the laser cooling is. Though, due to the recoil associated with each photon
absorption process, a further increase in ρps is hardly possible with the use
of dissipative light forces10.

2.4.3 Optical pumping
According to equation 3.2 the strength of the confining potential depends
on the quantum magnetic number mF . Therefore it is reasonable to trap
the atoms in the Zeeman state with the highest possible magnetic moment.
Within 700 µs we optically pump the atoms to the |F = 2,mF = 2〉 state. For
optical pumping we use σ+ polarized light propagating in the y-direction (de-

9The Doppler limit for Rb is TD = 145 µK.
10Overcoming the recoil limit for laser cooling has been reported however at less than

three dimensions [J.Reichel et al., 1995] or at relatively low atomic densities.
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tection beam), resonant with the
∣∣∣52S1/2, F = 2

〉
−→

∣∣∣52P3/2, F = 2
〉
transi-

tion. All other lasers are switched off at this time. To define the quantization
axis for optical pumping we turn on the homogeneous magnetic field of 8 G in
the y-direction which simultaneously serves as the bias field for the following
Z-trap.

2.4.4 Magnetic Z-trap
Immediately after the optical pumping is finished, a current of 2 A in the
Z-path of the chip is switched on. The Z-current together with the 8 G bias
field mentioned above form an Ioffe-Pritchard magnetic potential elongated
in the x-direction (Fig. 2.20 a) ). The strong asymmetry of the potential
in the z-direction is caused by the singularity on the chip surface at z =
0 (see chapter 3 for details of the chip geometry). However at the trap
bottom the potential is nearly cylindrically symmetric and in the harmonic
approximation is characterized by the trapping frequencies: ωx,y,z = 2π ×
(25.6, 259, 262) Hz. The trap center is at the position z0 = 446 µm under the
chip surface.

The transfer efficiency is limited by the trap volume to about 35% so that
we are able to confine 4×106 atoms in the magnetic trap. Atoms are slightly
heated during loading of the magnetic trap and the resulting temperature is
50 µK.

Figure 2.20: Initial magnetic trap. a) Simulation of the magnetic potential
at y = 0 for a chip current I = 2 A and a bias field B0 = 8 G. The initial
trap depth is 6.74 G, which corresponds to 453 µK in temperature units. b)
Absorption image of the 4× 106 atoms in the initial trap.
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Trap compression

Compression of the trap does not change the phase-space density: an increase
in atomic density is associated with an increase in the temperature so that
phase-space density remains constant. However, at higher densities the elas-
tic collision rate and therefore the speed of the evaporative cooling grows (see
also Sec. 3.2). The initial trap is compressed by raising the bias field to 27 G
within 20 ms. At the same time the amplitude of an additional homogeneous
field in the x-direction is increased from 0 to 3 G. This field defines the value
of the magnetic field at the trap minimum and thus the Larmor precession
frequency (Eq. 3.3). Increasing the Larmor frequency is necessary to avoid
trap losses caused by Majorana-Spin-Flips (see also Sec. 3.1.1). The com-
pressed trap has the harmonic frequencies: ωx,y,z = 2π × (20.7, 1338, 1344)
Hz at the minimum at z0 = 146 µm away from the chip.

2.4.5 Evaporative cooling
Evaporative cooling [Davis et al., 1995b,c; Ketterle and van Druten, 1996]
has been a key technique in all experiments aiming to achieve Bose-Einstein
condensation so far. It allows to increase phase-space density by more than
6 orders of magnitude while the number of atoms decreases only by a factor
of 100. The idea behind evaporative cooling is a successive removal of the
hottest particles from the sample and subsequent rethermalization via elastic
collisions resulting in a decreased average energy per particle. For this pur-
pose we utilize the so called RF-knife. This technique uses radio frequency
(RF) radiation to induce transitions between Zeeman sublevels separated by
the magnetic field. The frequency of the radiation matches the Zeeman split-
ting of the most energetic atoms. These atoms are transfered to the states
with lower quantum numbermF until they end up in a high field seeking state
and are repelled from the trap (Fig. 2.21 a) ). The evaporation frequency is
chirped as the temperature of the sample decreases.

Figure 2.21: Evaporative cooling in the magnetic trap with the RF-knife
method. a) Zeeman states are split in the magnetic field of the harmonic
trap; b) Coupling of the RF-frequency directly to the chip.



46

A common way to irradiate the atoms with RF is to use a macroscopic
antenna which can be a single coil with a few cm diameter. However, for
effective evaporation a few Watt of RF-power is required. Instead, we AC-
couple the RF-power directly to the chip Z-wires (Fig. 2.21 b)). Our ”on-
chip” antenna is located less than 1 mm away from the atom cloud, thus only
a few mW of RF-power are required. Radio frequency is generated by a 16-bit
frequency synthesizer (NI PXI-5406) which is a part of the data acquisition
equipment of our board computer. No additional amplifier is required.

The evaporation process takes 1.1 s. This is a typical duration for a
chip-based experiment and is one order of magnitude shorter than in macro-
scopic magnetic traps or in optical dipole traps. The evaporation is split
into 3 phases (Tab. 2.2). The RF-knife is turned on at the end of the trap
compression with the beginning frequency of 40 MHz. Subsequently the fre-
quency is ramped linearly within 540, 400 and 160 ms to 5 MHz, 3.1 MHz
and 2.695 MHz respectively, culminating with the transition to a BEC.

Whereas the chip current of 2 A is kept constant during evaporation,
the bias field is varied. In the first phase it increases to 65 G in order to
compress the trap further. The maximum trapping frequencies are ωx,y,z =
2π × (13.7, 7620, 7623) Hz. A high atom density is advantageous for fast
evaporation, however the rate of inelastic 3-body collisions (3-body recombi-
nation), which are the main loss channel from the trap, raises dramatically as
n2. Thus, it is necessary to decompress the trap as the evaporation proceeds.
The bias field is reduced to 55 G at the end of the first phase, 53 G in the
second phase and 35 G at the end of evaporation. The final trap in which
the BEC emerges has the frequencies: ωx,y,z = 2π × (18.5, 2245, 2249) Hz.

Figure 2.22 illustrates the enhancement in the phase-space density and the
loss in the number of atoms during the three phases of evaporation cooling.

2.4.6 Phase transition to BEC
The formation of a BEC occurs at the beginning of the last evaporation phase
at the critical temperature Tc ≈ 560 nK (Eq. 1.2 with N = 20000 atoms
and ω̄ = 2π× 454 Hz). With proceeding evaporation the last thermal atoms
are removed from the trap or condense. Finally we produce pure BECs with
approximately 10000 atoms (more than 90% in the condensed phase).

2.4.7 Decompression
The steep trap holding the BEC has to be adiabatically decompressed for two
reasons . First, three-body inelastic collisions at the density of the condensate
of 5 × 1014 cm−3 would limit its lifetime to a few tens of ms. Second, a
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Figure 2.22: Enhancement in phase-space density during the three phases
of evaporative cooling

reduction of the trapping frequencies is necessary in order to slow down the
free expansion after switching off the trap. Adiabatic decompression of the
trap is discussed in section 4.2.

In order to get rid of the remaining thermal atoms, the RF-frequency is
kept on for another 350 ms and is ramped up to 2.88 MHz.

The variation of any parameter (e.g. an analog voltage) from one phase
of the experiment to another can be chosen to be done in three alternative
ways: stepwise, linearly or by smooth ramping. Most of the time the two
first methods are used. However, during decompression the position of the
minimum of the magnetic potential varies, which can lead to unwanted mo-
mentum transfer to the condensate and collective oscillation of its center-of-
mass (Sec. 4.2.3). Therefore it is required, that decompression is performed
in smoothest possible way to minimize the acceleration of the trap center.
This is realized by Gauss-like ramping of the parameter value:

P (t) = (Pstart − Pstop)e−( t
AT )a + Pstop, (2.6)

where Pstart/stop is the beginning and the final value of a parameter P , T is
the duration of the ramp, A and a ≈ 1.7 are free parameters, whose values
are tuned empirically.
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2.4.8 Holding trap and free expansion
After decompression atoms are held for 18 ms in the final shallow trap whose
calculated trap frequencies are ωx,y,z = 2π × (4.46, 13.4, 21.7) Hz. Varying
the holding time can be useful for a measurement of the oscillation or the
lifetime in the trap (Sec. 4.2.3).

At the end of the holding trap the magnetic fields and the chip current
are turned off. We leave only a weak homogeneous field of 0.8 G in the y-
direction to fix the quantization axis. The condensate expands freely for the
time of up to 1 s. The results are presented in section 4.3.3.

Free expansion is followed by a destructive absorption image (Sec. 2.3.4).



Chapter 3

Atom chip

A proper explanation of the results presented in the next chapter requires
a knowledge of the magnetic field generated by the chip-trap with a µG
precision. Since the simulation of this field was an essential part of this
work, it is worth to study the principle of operation of a magnetic micro-
trap in detail and to characterize the magnetic potential generated by the
Quantus chip.

3.1 Magnetic trapping of neutral atoms
The idea to use magnetic fields to control the motion of particles emerged
from molecular beam physics, mass spectrometry and particle accelerator
physics. Planar multipole fields were primarily used for focusing and guiding
neutral particles having permanent magnetic dipole moment [Friedburg and
Paul, 1951]. A straightforward way to realize a closed storage volume -
a trap - is to properly bend the two-dimensional field. An example is a
magnetic storage ring in which a sextupole field is bent to a torus. The
magnetic storage ring was used in the late seventies to confine cold neutrons
for several minutes - the time substantially exceeding their natural decay
time [Kügler et al., 1978]. It is remarkable, that it were neutrons which were
trapped magnetically first, despite the fact that their magnetic moment is
a thousand times smaller than that of some neutral atoms (e.g. alkalis).
Though, three-dimensional DC magnetic traps play nowadays a crucial role
in production of atomic BECs. It is worth to underline the fact, that, with
the exception of the optical dipole traps [Cennini et al., 2003], so far there
is no way to achieve Bose-Einstein condensation in dilute gases other than
magnetic trapping and successive forced evaporative cooling.

49
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3.1.1 Magnetic potential
For a particle with a permanent magnetic dipole moment ~µ placed in a mag-
netic field ~B the interaction energy is given by:

U = −~µ · ~B = −µB cosϑ, (3.1)

where ϑ is the angle between ~µ and ~B. A classical object like a bar magnet or
a compass needle, simply aligns its magnetic moment parallel to the field in
order to reduce its energy. However, the magnetic moment of single atoms or
molecules arises from the angular motion (and/or spin) of their elementary
components. Thus, the behavior in a magnetic field is similar to that of a
spinning top in gravity. The exerted torque ~τ = ~µ× ~B produces a change in
angular momentum perpendicular to that angular momentum. This drives
the magnetic moment to precess around the direction of the magnetic field
keeping the angle ϑ constant (the so called Larmor precession - see Fig. 3.1).

Figure 3.1: A weak field seeking atom with a
total angular momentum ~F and magnetic dipole
moment ~µ placed in an inhomogeneous mag-
netic field ~B. ~µ precesses with the Larmor fre-
quency ωLarmor around the local direction of the
magnetic field. The force (here denoted as ~K to
avoid confusion with the angular momentum ~F )
points in the direction of the weak field.

Quantum mechanics allows only for discrete energy values depending on
the quantum number mF of the projection of the total angular momentum
~F on ~B:

U(mF , B) = µBgFmFB, (3.2)
where µB is the Bohr magneton and gF the g-factor. The angular frequency
ω associated with the energy splitting U = ~ω can be interpreted classically
as the Larmor precession frequency. From 3.2 one gets:

ωLarmor = µBgFmF

~
B. (3.3)

For 87Rb in its ground state 52S1/2, F = 2 andmF = 2: ωLarmor ≈ 9 MHz/G.1

1valid only for magnetic fields, for which the interaction energy is small compared to
the hyperfine splitting
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3.1.2 Harmonic approximation
An important remark about equation 3.2 is that the potential energy depends
on the magnitude, not on the sign of the magnetic field: U ∝

∣∣∣ ~B∣∣∣ = B.
The curvature of the potential and thus its attractive or repulsive character
depends on the sign of the product gFmF . Maxwell’s equations do not allow
for existence of a local magnetic field maximum in free space (Wing’s theorem
[Wing, 1984]). Thus, only particles with gFmF > 0 (weak field seeking states)
can be confined in a local minimum of the (static) magnetic field.

Around the minimum, the trapping potential can be approximated by a
harmonic one with the a characteristic oscillation frequency along the ith
eigenaxis of the potential:

ωitrap =
√
µBgFmF

m

∂2B

∂x2
i

. (3.4)

See Appendix A for details of calculating trapping frequencies in 3D.

3.1.3 Majorana losses
The above considerations are only valid as long the spin orientation relative
to the magnetic field is conserved - classically one would say: as long ϑ stays
constant. However, the field direction in a three-dimensional trap varies in
space. To fulfill the condition of constant ϑ the atom must move slowly
enough such that its magnetic moment adiabatically follows the direction of
the field. This is the case when the rate of change of ϑ is much less than the
precession frequency ωLarmor. The upper limit for dϑ

dt
is the harmonic trap

frequency ωtrap. Consequently, a stable trap requires:

ωLarmor >> ωtrap. (3.5)

The adiabaticity condition 3.5 can be violated in regions of weak magnetic
field for instance in the trap center, where ωLarmor is correspondingly small.
In such regions spin flips called “Majorana flops” [Majorana, 1932] take
place leading to losses from the trap. This is a problem for traps that use
quadrupole fields generated by a pair of anti-Helmholtz coils (MOT coils)
which have a zero crossing of the field. To avoid the Majorana losses an-
other type of magnetic trap with non zero magnetic field minimum can be
used. The most common such configuration is that of the Ioffe-Pritchard
trap [Pritchard, 1983]. For review and detailed analysis of the magnetostatic
traps see reference T.Bergeman et al. [1987].

Typical harmonic frequency of a steep trap for rubidium is of the order of
a few kHz. With a 1 G magnetic field in the minimum the Larmor precession
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frequency for an atom with mF = 2 is roughly 9 MHz, which is fairly enough
to satisfy the condition 3.5.

3.2 Microchip traps
Evaporative cooling, the final cooling stage on the way to BEC, can increase
phase-space density of an atomic ensemble by many orders of magnitude.
The key role in an effective evaporation plays a high elastic collision rate γ:

γ = nσv̄, (3.6)

where n is the density, σ the elastic scattering cross section, and v̄ the mean
atomic velocity. Adiabatic compression of the trap increases both n and v̄. A
typical three-dimensional harmonic trap is composed of a set of macroscopic
coils and bars with spatial extent ranging from a few cm up to 1 m. In
order to compress the trap, and to reach the desired steepness, high currents
of up to a few hundred A are required. Thereby several kW of Joule heat
is dissipated which can cause a variation of the trapping potential due to
thermal expansion of the coils. This puts challenging technical demands on
cooling the apparatus.

The idea to use micro-fabricated conducting planar structures to gener-
ate three-dimensional magnetic confinement has been suggested by Weinstein
and Libbrecht [Weinstein and Libbrecht, 1995] in 1995. It is based on the
fact, that the magnetic field around a thin wire carrying the current I scales
with the distance r as I/r. The corresponding gradient and curvature of the
field scale as I/r2 and I/r3 respectively. Still, sub-mm wires with a cross-
section of several µm2 can carry a few A of current. Thus, reduction of the
characteristic size of the trap (i.e. the distance from the conductors to the
trap minimum) promises an enormous improvement in the trap steepness and
at the same time significantly reduces power consumption. Table 3.1 com-
pares some properties of a tightly confining Ioffe-Pritchard (IP) trap, built of
a set of macroscopic coils by a group in Amsterdam, and described in [Dieck-
mann, 2001], with the chip trap used for the Quantus experiment. Despite
over 50 times smaller current, the microtrap allows for tighter confinement
resulting in ten times faster evaporation time. Unfortunately, miniaturiza-
tion affects the number of condensed atoms. 104 atoms in a BEC is a typical
value for chip traps. However, some setups optimized for higher trap depth
and volume achieve 10 times larger condensates [Ott et al., 2001; Schwindt,
1997].

Nowadays a multitude of different chip-trap configurations have been de-
signed and used worldwide. For a detailed review and application of mi-
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Table 3.1: IP coil trap from Amsterdam vs. Quantus chip

IP coil trap Quantus chip
current [A] 400 2 chip + 5.3 bias coil

power dissipation [kW ] 5.4 < 0.01
switch-off time [µs] 60 < 1

radial gradient [G/cm] 353 6300
radial frequency [Hz] 2π · 477.4 2π · 7620
axial frequency [Hz] 2π · 20.6 2π · 25.6
evaporation time [s] 10.6 1.1

atom number in BEC 3.8 · 106 9500

crotraps see references Reichel et al. [2001]; Folman et al. [2002]). Rapid
development in the field has culminated in 2001 with the realization of an
on-chip Bose-Einstein condensate by groups in Tübingen and Munich [Ott
et al., 2001; Hänsel et al., 2001].

3.2.1 Principle of operation
Two-dimensional confinement

Consider an infinitely thin wire carrying a current I along the positive x
direction (Fig. 3.2 a) ). The magnetic field is concentric and has an amplitude
that decays with the distance r from the wire axis:

Bwire(r) = µ0

2π
I

r
, (3.7)

where µ0 is the permittivity of vacuum. If a uniform external field ~B0 is
added perpendicular to the wire axis, it cancels the tangential component of
Bwire at the height:

z0 = µ0

2π
I

B0
, (3.8)

forming a line of zero field along the wire at ~r = [x, 0, z0] (Fig. 3.2 b) ).
It has been shown, that atoms can be guided in such a two-dimensional
trap [Denschlag et al., 1999]. This particularly simple field configuration is a
starting point for three-dimensional confinement, therefore it is instructive to
point out some of its properties. First, the field is of a quadrupole type: its
amplitude vanishes at the minimum and rises linearly and radially symmetric
in the vicinity of this minimum (see the density plot of the field amplitude in
Fig. 3.2 c) and cross sections of it along z and y in Fig. 3.2 d) ). For y = 0
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Figure 3.2: a) Two dimensional quadrupole confinement along a current
carrying wire is formed by the addition of a homogeneous field B0 perpen-
dicular to the wire axis. b) The resulting vector field has a zero-crossing
line at the distance z0 from the wire axis. c) shows the density plot of the
total magnetic field amplitude B (dark colors mean small field) and d) the
cross-sections taken at the minimum. The plots were calculated for I = 2 A
and B0 = 15 G.

the gradient of the field amplitude has only a vertical component, which can
be calculated by differentiating 3.7:

|B′(r)|y=0 = µ0

2π
I

r2 . (3.9)

In order to estimate the magnitude of the field gradient on the transverse
axis passing through the minimum, consider figure 3.3. It shows the magnetic
field at the distance r from a current carrying infinitely thin wire laying
along the x-axis. As in figure 3.2, an external homogeneous field ~B0 in the
y-direction is superimposed on that of the wire. At the minimum ~Bwire has
the same direction as ~B0 and the resulting field is zero. At a distance δr
from the minimum the amplitude of the field Bwire is (almost) the same as
at the minimum, but has a slightly different direction. The resulting field
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Figure 3.3: Towards estimation of
the field amplitude gradient along
the transverse axis passing through
the minimum of the quadrupole field
generated by a current carrying wire
and a homogeneous bias field.

(light blue) can be approximated by:

δB = Bwire(r)δϕ. (3.10)

Substituting Bwire(r) = µoI/(2πr) and δϕ = δr/r one gets for the transverse
field gradient:

δB

δr
=

µ0I
2πr

δr
r

δr
= µ0I

2πr2 . (3.11)

Thus, in the vicinity of the minimum, the gradient on the transverse axis is
the same as on the vertical axis and the trap has a radial symmetry.

Second differentiation of equation 3.7 and substituting r = z0 from equa-
tion 3.8, yields the field curvature at the minimum2:

B′′(z0) = (2π)2

µ2
0

B3
0
I2 . (3.12)

Equations 3.8, 3.9, and 3.12 show, that the full control over the trap param-
eters depends on two physical variables I and B0.

Three-dimensional confinement

Three dimensional confinement requires a field with non-zero magnetic field
components in x direction in addition to the field configuration described
above. This can be generated by bending the wire. Depending on how the
wire is bent, one distinguishes between two basic trap types: U- and Z-trap
(Fig. 3.4). In both cases the field generated by the central part of the
wire (along the x-axis), combined with the external field, produces a two-
dimensional quadrupole trap as before. The x-components from the bent

2Due to the zero crossing, the first derivative of the modulus of the field is not contin-
uous at z0 and thus the second derivative does not exist. However, for three-dimensional
traps with a non-zero minimum, this discontinuity is abrogated and equation 3.12 gives a
good approximation for the field curvature and consequently for the radial trap frequency
ωrad
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Figure 3.4: Three-dimensional confinement by U- and Z-trap. a) The U-
trap is of the quadrupole type: the field is zero at the minimum and rises
linearly in the vicinity of it. b) The Z-trap is of the Ioffe-Pritchard type:
the field has a finite x-component at the minimum (light blue arrow). Note
a slight shift of the minimum in the z-direction compared to the field from
Fig. 3.2. This shift is caused by the non-vanishing z-components of the
field generated by the bent part of the wire (marked as 1 and 2) which are
superimposed on the quadrupole field of the central part of the wire. The
plots were calculated for I = 2 A and B0 = 15 G, and a distance of 2 mm
between wires 1 and 2.

part of the wire close the trap along the x axis, whereas z-components shift
the position z0 of the quadrupole minimum. Axial confinement is usually
much weaker than radial. Note, that the vertical scale of the very right
graphs in figure 3.4 is ten times smaller than that of the left graphs.

In the case of the U-trap, the x-components of the field from the bent
part of the wire cancel at the center of the trap. The resulting field is zero,
therefore quadrupole-like (in all three spatial directions). Hence, the U-trap
is used as a microscopic equivalent of quadrupole coils in the magneto-optical
trap (see section 2.4.1).

The Z-trap, in contrast, is of the Ioffe-Pritchard type. It has a non-
vanishing x-component at the minimum. This field component is perpendic-
ular to the field of the central wire. All components are added quadratically,
so that the discontinuity of the first derivative of the field amplitude is ab-
rogated.
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Figure 3.5: Wire configuration for an H-type trap. Despite the symmetry
of the currents, the amplitude of the magnetic field at points A and B differs
leading to a tilt of the potential with respect to the x-axis (details in text).

3.2.2 Ideal H-trap
The major advantage of a Z-type trap is that it can easily be realized with
a single wire and an external bias field. However, this simplicity limits the
diversity of possible field configurations. Alternatively to bending the wire,
a three-dimensional confinement can be achieved with additional wires per-
pendicular to the central one. Consider two such parallel wires at a distance
d, forming an H-type trap (Fig. 3.5). Although this requires separate current
drivers for each wire, it provides more flexibility. In particular, varying the
current in one of the parallel wires shifts the position of the trap minimum
along the axial direction. Moreover, inverting the current direction in one of
the wires changes the quadrupole trap into an Ioffe-Pritchard one. Last, but
not least, the possibility to change the current in the central wire separately,
provides independent control of axial and radial confinement.

An ideal H-trap as the one shown in figure 3.5 is assumed to be composed
of infinitely long and infinitely thin wires. This assumption greatly simplifies
the calculation of the field distribution and its analysis. Still, most of the
properties of such an ideal trap are valid also for real traps (both: H- and
Z-type) as long the wires are longer than their separation d.

The ansatz for the calculation is a simple analytic formula for the mag-
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netic field around an infinite wire. For the wires of the Ioffe Pritchard trap
in figure 3.5 this yields:

~B1,2(x, y, z) = C

 −z
0

x± d
2

 1
(x± d

2)2 + z2

~B3(x, y, z) = C

 0
−z
y

 1
y2 + z2 +

 0
B0
0

 , (3.13)

with C = µ0I
2π . For simplicity the current is assumed to be equal in each arm.

The amplitude of the resulting magnetic field is:

B =
√
~B · ~B, (3.14)

with ~B = ~B1 + ~B2 + ~B3.

Shape of the potential

Figure 3.6 shows surfaces of constant field amplitude B for the H-type trap.
As already seen from figure 3.4, the axial confinement is usually much weaker
than the radial one. This statement is valid only if the trap minimum is
located close to the wire plane: z0 << d/2. If this is the case, the potential
is cigar-shaped with the main axis along x. A parameter that characterizes
elongation of the trap is the ratio of axial to radial trapping frequency:

ε = ωax
ωrad

. (3.15)

Obviously ε << 1 for a cigar-shaped trap. For the highly compressed Z-trap
used in the Quantus experiment, ε ≈ 1/320.

Further away from the minimum the potential apparently differs from
its harmonic approximation (right column in figure 3.6) and looks rather
submarine- than cigar-like. This flattening of the equipotential surfaces for
z < z0 is caused by a rapid growth of the field amplitude close to the chip
surface.

Asymmetry

Due to the symmetry of the wire configuration, the potential of the H-trap
might be expected to have a perfect radial symmetry around the x-axis. In
fact, only the position of the minimum: ~r0 = [0, 0, z0] remains ”symmetric”.
The symmetry axis of the trap is tilted in the xy-plane (Fig. 3.7). This tilt
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Figure 3.6: Surfaces of constant field amplitude of 3 G and 5 G (upper
row) for the H-trap (Fig. 3.5) and harmonic approximation of the potential
(lower row). The graphs were made with I = 2 A, B0 = 15 G, and d = 2
mm. The value of the field amplitude at the minimum is Bmin = 2 G, and
the harmonic frequencies are: ωx,y,z = 2π × (39, 521, 535) Hz.

originates from the vector addition of the field components which can easily
be understood from figure 3.5. Consider the magnetic field at points A and
B located above the chip surface, symmetrically with respect to the yz-plane.
The magnetic field vectors at these points (light blue arrows) generated by
the currents in the wires 1 and 2 have equal amplitude, but opposite sign
of the z-component. Adding the field of wire 3 (green arrow), which for
y 6= 0 has a non-zero z-component, results in a total field amplitude that is
slightly higher at point B. Thus, the equipotential lines in the vicinity of the
minimum tend to tilt towards point A.

Maximum displacement of the minimum

According to equations 3.8 and 3.12 one could expect, that, by reducing the
bias field B0, arbitrary shallow traps at any distance z0 can be achieved.
These equations, however, are valid only for the simple two-dimensional case
of figure 3.2. In 3D they are a good approximation for steep potentials with
a minimum close to the chip surface.

Figure 3.8 shows what happens to the vertical confinement of an H-trap
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Figure 3.7: Density plot of the amplitude of the magnetic field generated by
the H-trap at z = z0. Dark colors correspond to decreasing field; the white
”hills” are caused by the wires lying underneath (Fig. 3.5). The symmetry
axis of the potential is tilted in the xy-plane. .

Figure 3.8: Amplitude of the magnetic field for the H-trap (I = 2 A and
d = 2 mm) at x = y = 0 for decreasing value of the bias field B0.

if one reduces B0. The trap opens and the vertical position of the minimum
shifts towards its maximal value zmax0 , for which the minimum disappears. If
the bias field is reduced such that the minimum position is close to zmax0 the
field amplitude for z > zmax0 is lower than that at the minimum, which can
lead to tunneling of atoms through the potential barrier ∆U . For z → ∞
the chip field vanishes and the potential increases: B(z)→ B0 (not shown in
figure 3.8). One should however not be confused by the presence of a second
minimum for z > zmax0 - it is just a minimum in one direction and the overall
gradient at this point does not vanish.

Such behavior of the potential is caused by the presence of x-components
of the magnetic field (generated by the wires 1 and 2) which are vectorially
added to the quadrupole field of the central wire. Quantitatively one can
characterize the ”opening” of an H-trap with the wire separation d with the
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following statements:

• The maximal vertical position of the minimum is:

zmax0 = d

2 .

• If a minimum exists, the field amplitude at the minimum (trap bottom)
is lower than the bias field:

B(z0) < B0.

In the limiting case B(zmax0 ) = B0.

• For a given current I, zmax0 is reached for the bias field:

Bmin
0 = 2C

d
,

with C = µ0I
2π . For I = 2 A and d = 2 mm, Bmin

0 = 4 G.

• Second mixed derivatives ∂2B
∂x∂z

and ∂2B
∂y∂z

vanish at the minimum, there-
fore one of the eigenvectors of the Hessian matrix (Appendix A) equals
[0, 0, 1]. Consequently, the vertical axis of the trap is parallel to the
z-axis.

• By asymptoticaly approaching zmax0 , the vertical trapping frequency ωz
can take an arbitrary small value.

• The other two frequencies are equal at zmax0 and reach there a finite
saturation value:

ωx,y =
√
µBgFmF

m

8C
d3 .

For I = 2 A and d = 2 mm, ωx,y = 2π × 25.5 Hz.

• The tilt angle discussed in the previous section increases with increasing
z0 and asymptotically reaches its maximum value for z0 → z

(max)
0 . At

z
(max)
0 this angle is undefined due to the equality of the two horizontal
trapping frequencies.

From the four last statements it can be seen, that the trapping potential, ini-
tially cigar-shaped along the x-axis, evolves during decompression to become
cigar-shaped along the z-axis (Fig. 3.9 left).
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Figure 3.9: Equipotential surfaces of extremely decompressed traps (z0 →
z

(max)
0 ) for the H trap, Z trap and more realistic Z trap with diagonal wires.

3.2.3 Z-trap
The properties of an ideal Z-trap (with infinite wire 1 and 2) are qualita-
tively very similar to those of an H-trap. However, the missing halves of the
wires 1 and 2 as well as the short central wire (of length d), lead to some
quantitative differences. First, x-components of the field at the trap cen-
ter are lower than for an H-trap. Consequently, the trap is deeper and the
maximum vertical position of the minimum z

(max)
0 can exceed d/2. Second,

the trapping potential still has one of its principal axes along z, for which
the corresponding trapping frequency ωz is arbitrarily small for z0 → z

(max)
0 .

However, there is no cylindrical symmetry as in the case of an H-trap and
the potential resembles a pumpkin seed (Fig. 3.9 center). The reason for
this is, that in the horizontal plane there is a strong confinement from wire
1 and 2 along the diagonal axis connecting those wires. In comparison to
an H-trap, a Z-trap with d = 2 mm and I = 2 A reaches z(max)

0 = 2.3 mm
with B0 = 1.84 G and has horizontal frequencies ω1,2 = 2π × (8.5, 4.3) Hz
with a tilt angle of approximately 300. To achieve lower frequencies, one has
to put a magnetic field in the x-direction opposite to the field generated by
the Z-wires. This way the trap bottom is lowered further. Thereby attention
should be paid not to violate inequality 3.5 which could lead to Majorana
losses in the trap.

3.2.4 Quantus chip
Real chips are usually composed of finite pieces of wires, some of which are
directed diagonally. In addition, some wires must provide current to the
chip, and they are most commonly perpendicular to the chip plane. As a
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consequence of the presence of this additional wires the vertical principal
axis of the potential is in general additionally tilted (Fig. 3.9 right).

Chip architecture

Figure 3.10: Atom chip used in the Quantus experiment mounted on a
CF-40 vacuum flange (left). Chip surface with U- (blue) and Z-wires (red)
for generation of quadrupole and Ioffe-Pritchard potentials respectively.

The chip used in the Quantus experiment is shown in figure 3.10. It can
generate both: quadrupole and Ioffe-Pritchard magnetic potentials. Note,
that only the central part of the chip with a spacial extension of roughly 2
mm contains the bent wires that form the U and the Z shape. All other diago-
nal wires, that provide current to the central part, are negligible with respect
to the tightly confining potentials with a minimum close to the chip surface.
However, they can drastically change the properties of an ultra-shallow trap,
whose minimum is located at a distance z0 ≈ 1 mm. In particular, they lead
to a tilt of the trapping potential with respect to the z-axis in addition to the
tilt in the horizontal plane discussed in the previous section. Moreover, in
order to model the potential of the final shallow trap (the holding trap) de-
scribed in section 2.4, one has to take into account even the current-supplying
wires which are perpendicular to the chip surface (Fig. 3.11).

The magnetic field generated by the chip has been calculated by inte-
grating the Biot-Savart formula along current carrying wires and by adding
external homogeneous fields:

~B(~R) = µ0Iz
4π

∫
l

~dl × ~r
r3 + ~B0 + ~Bx + ~Bext. (3.16)
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~dB(~R) = µ0Iz
4π

~dl × ~r
r3

Figure 3.11: Biot-Savart law for
calculation of the magnetic field gen-
erated by the chip wires.

~Bx is an additional homogeneous field used to increase the value of the Ioffe-
Pritchard field at the minimum, in order to increase the Larmor precession
frequency (Eq. 3.3). ~Bext represents all kinds of remaining magnetic fields,
in particular the residual field inside the drop tower (Fig. 4.10). To calculate
the integral in equation 3.16 the strip lines on the chip are modeled by a
chain of straight and infinitely thin wires, for which an analytic solution to
3.16 exists. Parametrization of a straight thin wire is described in Appendix
B.

Limits of the chip trap

It has been mentioned in the previous section, that trapping potentials with
arbitrarily small harmonic frequency in z-direction can be generated with
microtraps. However, the existence of the potential barrier ∆U (Fig. 3.8)
and the decreasing potential beyond, limit the usefulness of extremely decom-
pressed traps. At a certain minimum trap frequency, the mean atomic energy
equals ∆U and atoms can leave the trap. In the Thomas-Fermi approxima-
tion (Sec. 4.1) the wave function of the trapped condensate vanishes for the
trap energies greater than the chemical potential µ. Thus, the ratio ∆U/µ
serves as a measure of the trap depth. In figure 3.12 the trap depth ∆U/µ is
depicted as a function of the harmonic trap frequency in the direction of the
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weakest confinement3. The minimum absolute depth at which the trap still
holds the atoms is 1 (red straight line). However, due to anharmonicity of
the potential further away from the minimum and due to the tunnel effect,
one should assume ∆U/µ > 1 as a realistic limit for an efficient trap. As
already mentioned, the existence of a potential barrier is correlated to the
field amplitude in the x−direction. In our experiment, in order to minimize
Majorana losses in the steep trap, we keep a field of 3 G in x-direction. This
limits the minimum trap frequency to roughly 2π× 3 Hz. Figure 3.12 shows,
that reducing this trap bottom field shifts the minimum trap frequency into
the 1 Hz domain.

Note that in the presence of gravity the weakest potential curvature is
almost one order of magnitude larger than in microgravity.

Figure 3.12: Ratio of the potential barrier ∆U to the chemical potential µ
(trap depth) as a function of the trap frequency corresponding to the weakest
axis of the harmonic potential for different values of external homogeneous
magnetic field in the x-direction (trap bottom field). This simulation was
done for I = 2 A and N = 10000 atoms.

3For the ideal H- or Z-trap this is the z-direction. For the real Quantus chip the weak
vertical axis is tilted.



Chapter 4

First observation of the
Bose-Einstein condensate in
microgravity

4.1 Evolution of the BEC in a time depen-
dent trap

The QUANTUS collaboration aims at observation of matter waves freely
evolving for times unprecedented in any earthbound BEC experiment. In
order to slow down the free expansion of the condensate, a reduction of the
trap curvature (decompression) is required. A theoretical description of the
experiment should therefore include the evolution of a Bose-condensed gas
under variations of the confining potential. The formalism should also be
valid in the limiting case of turning the potential completely off. Kagan et
al. [Kagan et al., 1996] introduced a scaling approach which allows for an
efficient description of the macroscopic wave function of a BEC in a time
dependent isotropic harmonic potential. In the seminal paper by Castin and
Dum [Castin and Dum, 1996] this theory was extended to 3D anisotropic
harmonic potentials characterized by three trapping frequencies ωi. How-
ever, the principal axes of the anisotropic trap were assumed to be time
independent and parallel to the axes of the frame. Moreover, the position of
the potential minimum was assumed to be fixed at the origin. None of these
assumptions is directly applicable in our experiment. A natural generaliza-
tion of the scaling approach that includes also arbitrary shifts and rotations
of time dependent harmonic traps has been developed by the Quantus the-
ory team from the University of Ulm and is described in detail in [Eckart,
2008]. The following section presents a brief overview of the basic ideas of

66
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this approach.

4.1.1 Thomas-Fermi approximation
Following the notation of [Castin and Dum, 1996] the single particle wave
function |Φ〉 of the Bose-Einstein condensate in a static trap is described by
the time independent Gross-Pitaevskii (GP) equation:

µΦ(~r) =
[
− ~2

2m∆ + U(~r) +Ng |Φ(~r)|2
]

Φ(~r). (4.1)

U(~r) is the trapping potential, which, in the vicinity of the minimum, can be
approximated by a harmonic one:

U(~r) = 1
2m

∑
j=1,2,3

ω2
j r

2
j (4.2)

with harmonic frequencies ωj and atom mass m. The last term of the Hamil-
tonian in equation 4.1 describes the atomic interactions in the mean-field
approach. Each atom exerts an averaged force from all other atoms, there-
fore the mean-field energy is proportional to the atomic density N |Φ(~r)|2,
where N is the number of atoms. The interaction strength is characterized
by a constant g = 4π~2a/m, where a is the s-wave scattering length. For
g > 0 the mean-field potential is repulsive. Finally µ is the chemical potential
determined by the normalization of |Φ〉:

µ = 1
2~ω̄

15Na
√
mω̄

~

2/5

, (4.3)

where ω̄ = (ω1ω2ω3)1/3 is the geometrical mean of the trap frequencies.
Equation 4.1 has a particularly simple solution in the regime where the

atomic interactions are much larger than the level spacing of the trapping
potential: Ng |Φ(~r)|2 >> ~ωj. In that case, one can use the Thomas-Fermi
approximation to solve 4.1, that is, one can neglect the kinetic energy term.
The resulting wave function is:

ΦTF (~r) =
√
µ− U(~r)
Ng

(4.4)

for µ ≥ U(~r) and 0 otherwise. If U(~r) is harmonic then a 1D cut through
the condensate density N |Φ(~r)|2 is an inverted parabola whereas a 3D ellip-
soidal surface of constant energy U(~r) = µ determines the edge of the spatial
extension of the condensate.
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It is worth to investigate the limit of the validity of the Thomas-Fermi
approximation. By neglecting the kinetic energy in 4.1 the total energy in
the center of the trap is the mean-field energy and equals µ. Thus, in the
Thomas-Fermi regime µ >> ~ωj is required. The ratio η = µ(ω̄)/(~ω̄)
for a spherical symmetric trap (ω̄ = ωj ≡ ω) is plotted in figure 4.1. For
N = 10000 atoms η = 3 for ω = 10 Hz. The final decompressed trap (holding
trap) in our experiment has the (geometric) mean frequency ω̄ = 2π × 10.9
Hz, and the frequency of the weakest confinement is ω3 = 2π · 4.46 Hz, both
satisfying η >> 1.

Figure 4.1: Validity of the Thomas-
Fermi approximation. Ratio of the
chemical potential to the trap level
spacing as a function of average trap
frequency for N = 10000 atoms.

4.1.2 Time dependent potential
Generalization of 4.1 to the time dependent case in which both U and Φ are
functions of t leads to an explicitely time dependent GP equation for which
the Thomas-Fermi approximation is not applicable. This equation can be
solved numerically [Rupreht et al., 1995] or, as derived in [Castin and Dum,
1996], by introducing a coordinate transformation: rj(t) = λj(t)rj(0), (j =
1, 2, 3). The dynamic of the macroscopic wave function is then contained in
the evolution of three scaling parameters λj, which obey the set of differential
equations:

λ̈j =
ω2
j (0)

λjλ1λ2λ3
− ω2

j (t)λj (4.5)

with the initial conditions λj(0) = 1 and λ̇j(0) = 0. The condensate density
becomes a time dependent inverted paraboloid:

N |Φ(~r, t)|2 = 1
gλ1(t)λ2(t)λ3(t)

µ− 1
2m

∑
j=1,2,3

ω2
j (0)

(
rj
λj(t)

)2
 (4.6)

if the right hand side is positive and zero otherwise.
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4.1.3 Generalization to a rotating trap
The above approach describes the evolution of the macroscopic wave function
of the condensate in a frame whose axes are collinear with the principal
axes of the trapping potential. Moreover, the latter are assumed to be time
independent. A natural generalization of the equations 4.5 and 4.6 can be
introduced for the case of a rotating trap. A harmonic trap, whose principal
axes are oriented arbitrarily in space is described by the Hessian matrix Ω(t)
(Eq. A.1). Also the scaling parameters λj in this general case are represented
by a matrix Λ(t), which has to satisfy a nonlinear matrix differential equation
[Eckart, 2008]:

ΛT (t)
(
d2Λ
dt2

+ Ω2(t)Λ(t)
)

= Ω2(0)
detΛ(t) (4.7)

with the initial conditions Λ(0) = 1 and λ̇j(0) = 0. Obviously, in the case of
a freely expanding condensate released from the trap at t = t0, Ω(t) ≡ 0 for
t > t0 is required. It is also straightforward to implement nonzero elements
of the Hessian, that for t > t0 describe residual fields and thus can influence
the free expansion.

Evolution of the condensate density now becomes:

N |Φ(~r, t)|2 = 1
g · detΛ(t)

[
µ− 1

2m (~r − ~r0(t))T M(t) (~r − ~r0(t))
]

(4.8)

for the right hand side positive and zero otherwise, with
M(t) = (Λ−1(t))TΩ2(0)Λ−1(t) and ~r0(t) the time dependent position of the
minimum of the potential. Thus, everything required to determine the dy-
namics of the condensate in a time dependent trap is the Hessian matrix of
the potential Ω(t) and the position of the trap center ~r0(t). Both were esti-
mated by numerical calculation of the trapping potential U(~r, t) ∝

∣∣∣ ~B(~r, t)
∣∣∣

as described in section 3.2.4 and appendix A. The next section quantita-
tively summarizes the time evolution of the trapping potential during the
trap decompression phase.

4.2 Evolution of the trapping potential

4.2.1 Adiabatic decompression of the trap
As shown in the last section, the trapping frequencies (or generally the Hes-
sian matrix Ω(t)) are crucial parameters that determine the free evolution
of the condensate after switching-off the trap. In order to slow down the
free expansion one has to adiabatically reduce the trapping frequencies (Fig.
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Figure 4.2: Lowering of the chip current Iz (left) and the bias field B0
(right) by the decompression of the trapping potential.

Figure 4.3: a) Position of the potential minimum z0 during decompression
of the trap: numerical calculation for the real trap (blue) and z0 given by the
2D formula 3.8 (red). b) Time evolution of the confinement in the z-direction
(in the harmonic approximation).

1.3). Adiabatically means slowly enough, so that the condensate can follow
changes of the potential. This occurs when the time scale δt, on which the
trapping frequency ω changes by δω, is of the order of the oscillation period in
the trap: δt ≈ 1/ω. Moreover, one requires small frequency steps: δω << ω.
These two constraints combined lead to the adiabaticity condition:∣∣∣∣∣dω(t)

dt

∣∣∣∣∣ << ω2(t). (4.9)

As discussed in section 2.4, the Bose-Einstein condensate arises in a steep
elongated trap with the radial and axial trapping frequencies ωrad = 2π×2250
Hz and ωax = 2π × 18.5 Hz. Subsequently the trap is decompressed within
752 ms. During that time both the chip current Iz and the bias field B0 are
decreased according to equation 2.6 (Fig. 4.2). Figure 4.4 presents details of
the decompression process. Calculated trapping frequencies f = ω/(2π) are
shown in figure 4.4 a). Their final values in the holding trap are: fx = 4.46
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Hz, fy = 13.42 Hz, and fz = 21.75 Hz. The radial frequencies fy and fz
are almost equal during most of the decompression time. In the holding
trap they differ by a factor of two leading to a pumpkin seed shape of the
potential (Fig. 4.4 b) ) Note that, due to rotation of the trap axes, the
indices x, y, z do no longer have their initial meaning. In particular, the axes
of the radial confinement are rotated by 90o and interchanged. Rather, in
figure 4.4 b) colors are used to classify the principal axes of the potential and
the associated frequencies: red for the strongest confinement, blue for the
medium and green for the weakest.

Figure 4.4 b) shows the surfaces of constant energy equal to the chemical
potential µ (plots are made for N = 10000 atoms). In the Thomas-Fermi
approximation they give a quite reliable impression of how the confined con-
densate looks like. One can see that the trap, initially elongated in the
x-direction (left graph), is tilted both in the horizontal plane and in the z-
direction (right graph). The angles θ and ϕ that characterize the tilt of the
weak axis are plotted as a function of time in figure 4.4 c).

Finally, figure 4.4 d) is a graphical check of the adiabaticity condition 4.9.
The black curves are the squares of the trapping frequencies, and the red and
green ones are the negatives of the time derivatives of fy and fx respectively.
Clearly, condition 4.9 is fulfilled for the majority of the decompression time.
Only at the end phase of the decompression the weak confinement seem to
decrease too fast. However, the numerical solution of the time dependent
GP equation [Eckart, 2008] did not show any unwanted dynamics of the
condensate in the holding trap.

4.2.2 Shift of the trap center by decompressing
In the second phase of decompression (from 350 ms on), the value of the chip
current Iz is kept constant at 1.2 A and the bias field B0 is further reduced
(Fig. 4.2). In doing so, the position z0 of the minimum increases (Eq. 3.8).
It has already been pointed out, that equation 3.8 is just an approximation
valid in the two-dimensional case or for tightly confining traps close to the
chip surface. Evolution of z0 given by equation 3.8 for time dependent Iz and
B0 is shown in figure 4.3 a) (red). The blue curve is the actual position of
the potential minimum, found numerically. Obviously, the two curves diverge
for higher z0 and equation 3.8 is does not hold in this regime. Figure 4.3 b)
shows the time evolution of the confinement (in the harmonic approximation)
in the z-direction.
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Figure 4.4: Adiabatic decompression of the trapping potential.
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4.2.3 Collective oscillation of the BEC in the decom-
pressed trap

Figure 4.5: Calculated oscillations in the trap for a duration of the decom-
pression of tD = 250 ms (left) and tD = 750 ms (right).

Before the trap is switched off, the potential minimum is intentionally
shifted away in order to avoid a collision of the freely expanding condensate
with the chip surface. On the other hand, moving the trap center can lead
to some unwanted effects. Just imagine a barman who, while serving a beer,
is sliding a glass on the table board. If you stop the glass all of sudden,
you will loose half of your beer! In practice one cannot move an object from
one place to another without accelerating it. In the rest frame of the trap
center an inertial force acts on the atoms, which displaces them from the
equilibrium position. Center-of-mass of the atomic cloud begins to oscillate
around the momentary potential minimum (dipole oscillation). If the cloud
is thermal, interatomic collisions will damp the oscillation. However, for a
quantum degenerated gas, the conservative magnetic potential is an almost
completely friction-free environment in which a collective oscillation can last
for a time easily exceeding the vacuum limited lifetime of the BEC.

For an atom with mass m confined in a time dependent harmonic poten-
tial, the classical equation of motion in the z-direction1 is:

mz̈ = −k(t)(z − z0(t)), (4.10)

with the spring constant k(t) = mω2
z(t). In the rest frame of the trap center

given by z̃(t) = z − z0(t), equation 4.10 can be rewritten as:

m¨̃z = −k(t)z̃ −mz̈0, (4.11)
1Despite the asymmetry of the Quantus chip, the position of the minimum of the

potential does not vary significantly in the horizontal directions while decompressing the
trap.
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where the last term on the right hand side is the inert force, which depends
on the acceleration of trap center. The numerical solution of equation 4.11
is shown in figure 4.5. After decompression, the atomic cloud oscillates in z-
direction with a frequency equal to the vertical frequency of the holding trap
(ωz = 2π×10.53 Hz). The amplitude of this oscillation depends critically on
the duration of the decompression tD. Increasing this time by a factor of three
reduces the amplitude of the oscillation more than ten times. 0.75 s has been
chosen as a compromise between minimizing the oscillation amplitude and
maximizing the number of atoms that remain in the holding trap. Moreover,
the smooth, gauss-like form of the ramp used to reduce the trap potential
during decompression (Eq. 2.6 and Fig. 4.2) has been optimized to minimize
the amplitude of the oscillation.

The calculated oscillation amplitude is 0.7 µm, which is much less than
the spatial extension of the condensate (Fig.4.4 b) ) and is not to be resolved
with the existing imaging system. Even after decreasing tD on purpose, direct
observation of the BEC oscillation in the trap is hardly possible. Instead, one
can trace the periodic time dependence of the center-of-mass velocity. After
decompression, the BEC is held in the shallow holding trap for a certain time
thold. Its position and velocity in the trap are given by:

z0(thold) = z0 + A sin(ωzthold + ϕ0)
v0(thold) = Aωz cos(ωzthold + ϕ0), (4.12)

with the oscillation amplitude A and some initial phase ϕ0. On the ground,
after switching-off the trap, the condensate is accelerated by gravity and falls
down. Its vertical position depends on both: the time tTOF of free evolution
and the holding time thold:

z(tTOF , thold) = z0 + v0(thold)tTOF + 1
2gt

2
TOF

= zoff + Aωzcos(ωzthold + ϕ0)tTOF . (4.13)

As already mentioned, the oscillation in the trap cannot be seen, therefore
the time dependence of z0 can be neglected. Figure 4.6 a) presents a series
of measurements of the center-of-mass position z for a fixed time of flight
tTOF = 24 ms and variable thold (red squares). As expected from equation
4.13, the center-of-mass oscillates with the trapping frequency ωz around the
offset position zoff = z0 + 1/2gt2TOF . The red solid line is a sine function
fitted to the experimental data. Due to a slight tilt of the vertical axis of
the trap, moving the trap in the z-direction also excites axial oscillation in
x-direction (black line and squares). At the same time the tilt is sufficiently
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Figure 4.6: a) Measured oscillation in the z- (red) and x-direction (black)
after tTOF = 24 ms for a duration of the decompression tD = 110 ms. b)
Trapping frequency dependence on the bias field B0 (the chip current Iz = 1.2
A).

small such that the field curvature along the principal axes of the trap and
along the frame axes does not differ significantly.

Such measurement of the trapping frequencies has been performed for
several final values of the bias field B0 corresponding to different steepness
of the holding trap. The result is depicted in figure 4.6 b). The solid lines
give the calculated dependency of the trapping frequencies on B0

2. The
experimentally found trapping frequencies (red and black squares) are in very
good agreement with the theoretical prediction, which confirms the reliability
of the simulation.

Note that each square in the left graph of figure 4.6 corresponds to running
the complete experimental sequence once. It takes less than half a minute
to collect one data point in the laboratory so that a complex measurement
like that of figure 4.6 b) can be done within a few hours. However, things
get more complex in microgravity. Since the drop tower facility allows to
perform only three drops per day, a measurement of the trapping frequency
can take several days. Nevertheless an effort to estimate the frequencies has
been undertaken (Fig. 4.7). A slight discrepancy between the measured
(fitted) and simulated frequencies is caused by the tilt of the principal axes
of the trap (Fig. 3.7), which is not negligible for a decompressed trap in
microgravity. Errors of the simulation are mainly due to the uncertainty of
the dimension of the bias coils which has been assumed to be 0.5 mm.

2The gravitational potential has been included in the simulation.
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fit sim.
fz [Hz] 19.1± 4.24 27.1± 0.3
fx [Hz] 17.6± 0.8 13.7± 0.1
zo [mm] 1.43± 0.36 1.14

Figure 4.7: Measured oscillation in microgravity (Iz = 2 A and
B0 = 2.4 G).

4.3 Free expansion of the BEC in micrograv-
ity

4.3.1 Center-of-mass motion
The x− and z-position of the center-of-mass of the condensate during the
time of flight was read out from absorption images and the results are de-
picted in figure 4.8. Whereas experimental data for the x-direction are in a
good agreement with the theoretical prediction, we observe an unexpected
large drift in the vertical direction. The corresponding acceleration in the
z-direction is a = 7.92 × 10−3 m/s2 for t < 750 ms. Moreover, a turning
point at TOF ≈ 750 ms makes the observation even more difficult to ex-
plain. Possible forces and boosts on the atoms are analyzed below, however
none of them is sufficient for a conclusive interpretation of the data.

As will be shown in the next section, the analysis of the expansion data
indicates the existence of a residual magnetic field focusing the atoms in the
x-direction. The presence of such a field could also explain the much smaller
horizontal displacement of the center-of-mass position.

4.3.2 Systematic errors
Initial velocity in the holding trap

Even though the decompression time of the magnetic trap and the shape
of the ramp have been optimized, it is not possible to completely avoid a
residual center-of-mass motion in the holding trap. The numerical solution
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Figure 4.8: Center-of-mass position of the BEC during 1 s TOF. Error bars
are standard deviations for the TOFs for which several measurements were
done. Black lines are simulated with Eq. 4.10 in 3D with a residual trapping
field in the x-direction (ωx = 2π× 0.34 Hz). Red lines on the right graph are
fits to the data and correspond to a hypothetical acceleration a = 7.92×10−3

m/s2 for t < 750 ms and to a velocity v = 14 mm/s for t > 750 ms

of the 3D counterpart of equation 4.10 predicts an initial velocity of Vx = 160
µm/s and Vz = −60 µm/s after turning off the trap.

With our current controller we are able to switch off the chip current
within less than one µs (the bias field is subsequently slowly ramped down
within 50 ms). It is possible, that during the switching the condensate gets
a ”kick”, which adds to its initial velocity. This issue however has not been
investigated quantitatively within this thesis.

Residual air friction

The drop tube is evacuated to less than 20 mbar before each drop. Never-
theless, residual air pressure has a measurable effect on the falling capsule.
Since friction of the residual air acts as a viscous force that is proportional to
the velocity of the drop capsule, this force increases during the drop and de-
celerates the capsule by more than 10−5 g at the end of the drop3 (Fig. 4.9).
During the third second of free fall, that is during the free expansion of the
BEC, the residual deceleration is on the order of 0.5− 1 · 10−5 g. Obviously,
this friction does not act on the condensate kept inside the ultra-high vacuum
chamber, thus it falls a bit faster than the capsule. In other words, in the
rest frame of the falling capsule an additional fictitious inertial force pushes

3Experiments, which require better µg-level can benefit from nested capsule assembly.
It resembles the famous Russian toy Matryoshka (or Babushka), which is a set of dolls of
decreasing sizes placed one inside the other
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the condensate away from the chip (that is in the positive z-direction). In
the worst case of a = 10−4 m/s2, the atoms would move by 50 µm during
the free expansion of 1 s.

Figure 4.9: Acceleration in the drop capsule measured during a catapult
shot. Residual air pressure in the drop tube results in a velocity dependent
damping force on the capsule. Measurement with the ONERA SuperStar
accelerometer; figure courtesy of H. Sellig (ZARM).

Residual magnetic field in the tower

The drop tube is composed of several steel cylinders with a height of 6 m each,
put one on another and welded. Welding is liable to increase the amount of
ferrite in the steel, consequently increasing its magnetic permeability. As a
consequence, residual magnetic field inside of the drop tube features a spatial
modulation with a period of ≈ 6 m (Fig. 4.10). The spatial modulation of
the field generates field gradients. With one flux-gate sensor, we were able to
estimate the magnetic field gradient in the vertical direction only. However,
since the diameter of each cylinder is greater than its height, it is reasonable
to assume that the horizontal components of the gradient are at most of the
same order as the vertical ones. During the free expansion of the BEC the
highest gradient in the z-direction would cause an acceleration of at most
3 ·10−5 m/s2. Note however, that the spatially oscillating field has a gradient
that changes its sign, therefore the average force on the atoms should vanish.

It should be pointed out that the above estimate of the field gradient
relies on a measurement that has been performed with a single layer of µ-
metal screening (Fig. 4.10). With the second layer mounted later on both,
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the DC-offset and the amplitude of the modulation are further reduced by
approximately a factor of three.

Figure 4.10: Residual magnetic field along the symmetry axis of the drop
tube measured inside a single layer of µ-metal screening. Digital timing
markers (pink) indicate precisely the phases of the experiment during the
drop.

Inhomogeneity of the Helmholtz-field

As described in section 2.4, in order to define a quantization axis, a homo-
geneous magnetic field of 0.8 G in the y-direction is kept on during TOF.
The field is generated by a pair of Helmholtz coils, the same as used for
the bias field in the magnetic trap. The field of the Helmholtz coils is most
homogeneous along the symmetry axis of the coils. However, this is located
5 mm below the chip surface, 3-4 mm above the center-of-mass of the freely
expanding condensate. This motivated us to simulate the inhomogeneity of
the coil field in detail. The results are presented in figure 4.11. One can see,
that the week-field-seeking atoms will be pushed towards the chip surface
if the average distance between the coils is greater than their radius4 (blue
curves Fig. 4.11 b) and c) ). However, even with an inaccuracy of 0.5 mm in

4If the distance is smaller than the radius, the magnetic field has a minimum at the
center between the coils, the gradient has opposite sign but the same absolute value.
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coil fabrication, which is well beyond the tolerances that are typically guar-
anteed by any mechanical workshop, the resulting acceleration at the place
of the atoms is only on the order of 5 · 10−5 m/s2.

Figure 4.11: Inhomogeneity of the Helmholtz-coil generating the bias mag-
netic field B0. The coils have an average radius r = 90 mm (not to scale in
graph a) ) and N = 100 windings forming a 10× 10 square wire matrix. The
symmetry axis of the coils is located at z = 5 mm (z = 0 refers to the chip
surface). b) Relative deviation from the field value in the center and c) the
field gradient (in units of acceleration of a Rb atom) for ideal coils with an
average distance d = r (red) and for coils with d = 90.5 mm (blue). Plots
were made for I = 0.08 A

Ion-getter pump

The ion-getter vacuum pump, which is equipped with two strong permanent
magnets, is located on the platform above the vacuum chamber at an average
distance of 0.5 m from the atom chip. Based on the pump’s data sheet we
reconstructed the radial magnetic field gradient at the place of the BEC to be
B′(r) = 3.5 · 10−4 G/cm . This corresponds to an acceleration a = 2.2 · 10−4

m/s2 pointing downwards, that is in the positive z-direction. The pump
however has its own 3 mm thick µ-metal screen, which together with the
screen surrounding the vacuum chamber should reduce the gradient by at
least a factor of 30.

Residual charge on the chip

The chip current is actively stabilized to zero during the free expansion.
We noticed however that there is an electric potential difference ∆u = 0.6
V between the Z-wire and the vacuum chamber when the chip current is
off. Thus, there must be an inhomogeneous electric field E(r) inside of the
vacuum chamber. In order to estimate its strength, we consider the Z-wire
and the walls of the vacuum chamber to from a cylindrical capacitor with an
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inner radius equal to the width of the wire r1 = 30 µm and the outer radius
equal to the distance of the chip to the wall: r2 ≈ 5 cm. Then the electric
field decreases with the distance r from the chip as: E(r) = ∆u/(r ln(r2/r1)).

A neutral rubidium atom placed in a static electric field E exerts an
energy shift: ∆U = 1

1αE
2, where α = 0.0794 MHz/(kV/cm)2 is the DC-

polarisability of the of the ground state. Inserting the above expression for
E(r) yields a 1/r2 dependence of the potential energy and a 1/r3 dependence
of the force. Quantitatively, at r = 1 mm an atom would exert an acceleration
towards the chip surface of a = 2.4 × 10−7 m/s2 - much smaller than any
other effects considered.

The atom chip is composed of several micro strip lines (Fig. C.1), only two
of which are connected to the current controller and used in the experiment.
Since the unused wires are not grounded, it is possible that they couple
capacitively to the other wires and gather a static charge. This effect however
has not been investigated quantitatively so far, but it is hard to imagine, that
the induced voltage exceeds 1 V. Nevertheless, the unused wires will definitely
have to be grounded for the next drop campaigns.

4.3.3 Free (?) expansion
The axial and the radial size of the BEC was determined from absorption
images for different times of flight (Fig.1.7 and 4.12). The measured radial
size is in good agreement with the numerical simulation. However, the con-
densate expands much less than expected in the axial direction. Its final
axial size of approx. 150 µm after 1 s of TOF is unphysical, which can be
deduced from the following consideration. First, as described in section 3.2.2,
when decompressing the microtrap by reducing the bias field, only one trap-
ping frequency can be reduced to zero, whereas the two other frequencies
reach their finite saturation values of ωy = 2π × 12, ωz = 2π × 21 Hz for
the Quantus chip. Since the expansion parameters λi are coupled (Eq. 4.5)
these two frequencies increase the expansion speed also in the axial direction.
Minimizing ωx slows down the expansion but simultaneously increases the
axial size of the ground state in the holding trap. For ωx = 2π × 0.3 Hz the
axial size would be approx. 150 µm in the holding trap and it would increase
more than twice after 1 s TOF. Even more, a trap with such low frequency
would not be able to hold 10000 atoms, since the potential barrier is much
lower than the chemical potential (Fig. 3.12).

Much slower axial expansion would be possible with lower radial frequen-
cies of the holding trap ωy and ωz. This would however slow down the radial
expansion and the measured radial size would not fit the simulation.

This inconsistence in the size of the expanding BEC suggests the existence
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Figure 4.12: Expansion of the BEC during 1 s TOF. Left: radial size (z-
direction), right: axial size (x-direction). Squares are extracted from inverted
parabola fits to absorption images normalized to N=10000 atoms. Red and
blue solid lines are projections on the z- and x-axes of the 3D condensate
density calculated with equation 4.8. The red dashed lines reflect the 10%
uncertainty level of the simmulation due to an assumed 0.5 mm inaccuracy in
the fabrication of the bias coils. Black solid lines simulate the axial expansion
in the presence of a residual focusing field with a frequency of 2π× 0.36 and
2π × 0.85 Hz respectively. The existence of such a field would not affect the
radial size.

of a residual force focusing the atoms in axial direction. Such a field can be
modeled by a nonzero element Ω11 of the Hessian matrix. The sudden release
of the condensate into a residual trap whose frequency is much smaller than
that of the holding trap is not an adiabatic process. Thus, the condensate
axial width oscillates in a breathing mode. Additionally, since the axis of the
residual trap does not coincide with that of the holding trap, the y-axis of
the expanding condensate undergoes a torsional oscillation. Both oscillation
modes lead to an effective periodic change of the axial width that is seen by
the camera. The black solid curves in the right graph in figure 4.12 illustrate
the axial expansion in the presence of a residual field with a minimum at
x = 0 and a harmonic frequency of 2π × 0.36 and 2π × 0.85 Hz respectively.
The experimental data clearly indicate the presence of a sub-Hertz residual
field. The source of this field could be for instance a residual magnetization
of the vacuum chamber.

Note that the blue and black curves in figure 4.12 do not differ significantly
for the free expansion times accessible in earth-bound experiments (TOF
< 100 ms). However, after one second of free expansion the size of the
condensate released from a trap with the initial frequency ωx = 2π × 4.5 Hz
can differ by a factor of 3 due to the presence of a weak residual trap with a
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harmonic frequency of ωres = 2π × 0.36 Hz. The field of such a trap varies
only by a few µG over the spatial scale of 200 µm considered here. This
indicates that a freely expanding quantum gas might potentially offer a high
sensitivity for measurements of extremely small magnetic fields.

Free expansion of a thermal cloud

The hypothesis of a residual field confining the atoms in the x-direction was
confirmed by measuring the expansion of the thermal cloud (Fig. 4.13).
Atoms with a temperature T = 23 nK were prepared by aborting the RF-
evaporation 40 kHz above the transition to BEC and subsequent decompres-
sion of the trap. The density distribution of the confined thermal atoms
reflects the shape of the potential (the very left absorption image in Fig.
4.13). However, a thermal cloud should expand isotropically after switching
off the trap. This means, that for free expansion times larger than 1/ω the
density distribution should become spherically symmetric. From the absorp-
tion images in figure 4.13 it can clearly be seen that the aspect ratio of the
cloud η(t) = σx(t)/σz(t) does not saturate to unity but further decreases for
t > 100 ms.

Since the radial size of the cloud σz(t) is not affected by the presence of the
residual field, one can estimate the temperature of the cloud by means of bal-
listic expansion in the z-direction (Fig. 4.13 bottom left graph). The width
of the freely expanding thermal gas is given by: σz(t) =

√
σ2
z(0) + v2t2TOF

with an initial width σz(0) and a mean expansion velocity v =
√
kBT/m.

The best fit to the expansion data (red curve), with σz(0) and T as fit pa-
rameters, yields 23(±2.5) nK for the temperature. The black curve (bottom
right graph) characterizes the free axial expansion with this temperature.
Only for short expansion times (tTOF < 50 ms) the axial widths fit the free
expansion model with T = 23 nK. For longer times the influence of the
residual trap can not be neglected and the expansion is slowed down. Ex-
pansion in the presence of a harmonic field can be modeled by substituting
v → v(tTOF ) =

√
kBT/m − ātTOF where ā = 1

2ω
2
xσ

max
x is the average accel-

eration on a cloud expanding to a maximum width σmaxx . This expansion
model with σmaxx = 187 µm and ωx = 2π×0.85 Hz is represented by the blue
solid line. Clearly, the measured widths of the thermal cloud confirms the
existence of a weak sub-Hertz residual trap in axial direction.
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Figure 4.13: Ballistic expansion of an ultra cold thermal cloud: absorption
images and their projections on the x- and z-axis taken after various times
of flight (upper row). The red line in the bottom left graph is the best fit
to the data (black squares) with the temperature as a fit parameter. The
black curve in the bottom right graph characterizes the free axial expansion
with a temperature T=23 nK. The blue curve describes axial expansion in
the presence of a weakly confining field in the x-direction with a harmonic
frequency ωx = 2π · 0.85 Hz.



Chapter 5

Future perspective

5.1 BEC in a magnetic insensitive state
In the last chapter the unexpected movement of the condensate center-of-
mass (Fig. 4.8) as well as the focusing effect in the x-direction during the
free expansion (Fig. 4.12) were presented. Both effects indicate the exis-
tence of residual forces on atoms in the absence of the trapping potential.
In order to confirm or exclude the magnetic character of these forces, prepa-
ration of atoms in the magnetic insensitive state mF = 0 is currently being
implemented. Since for an effective and fast evaporative cooling a high atom
density and a steep trap is required, we plan to leave the atoms in themF = 2
state during the evaporation. Transfer to the mF = 0 state will be performed
after the decompression phase, directly before the free expansion.

Coherent population transfer between the Zeeman states is possible with
the use of an adiabatic rapid passage (ARP). This quantum mechanical effect
takes place when an electromagnetic field, coupling two levels of an atomic
or molecular system, is frequency-swept across the resonance. The ARP
was first observed in nuclear magnetic resonance [Bloch, 1946]. However the
phenomenon is quite general and was demonstrated in optically induced elec-
tronic transitions [Ekstrom et al., 1999] and recently between the hyperfine
and Zeeman transitions in the alkali atoms [C.Camparo and Frueholz, 1984].

A common way to explain the ARP is to use the dressed-atom approach
[Camparo and Frueholz, 1984]. For a two-level atomic system, the dressed
state Hamiltonian is given by:

H = 1
2~
[

δ ΩR

ΩR∗ δ

]
(5.1)

with the eigenenergies ±1
2~
√

Ω2
R + δ2. The Rabi frequency ΩR describes the

85
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coupling strength between the levels and δ is the detuning of the coupling
field from the resonance. If we denote by |1〉 and |2〉 the eigenstates of the
system ”atom + field” without coupling (ΩR = 0), we find the normalized
eigenvectors of 5.1 (the dressed states) to be the mixtures of the pure states:

|φ1〉 =
δ +

√
Ω2
R + δ2

ΩR

√
1 + (

√
Ω2
R+δ2+δ
ΩR )2

|1〉+ 1√
1 + (

√
Ω2
R+δ2+δ
ΩR )2

|2〉

|φ2〉 =
δ −

√
Ω2
R + δ2

ΩR

√
1 + (

√
Ω2
R+δ2−δ
ΩR )2

|1〉+ 1√
1 + (

√
Ω2
R+δ2−δ
ΩR )2

|2〉 . (5.2)

Introducing the mixing angle θ defined by tan(2θ) = ΩR/δ, expressions 5.2
simplify to

|φ1〉 = cos(θ) |1〉+ sin(θ) |2〉
|φ2〉 = −sin(θ) |1〉+ cos(θ) |2〉 . (5.3)

The ARP occurs when the atom-field system enters and leaves the avoided
crossing region (δ = 0) in the same dressed state. For example, if an atom is
initially prepared in the state with higher energy and the passage starts with
δ < 0, then θ = π/2 and the dressed atom wave function is well approximated
by |2〉 (Fig. 5.1 a) ). Now the frequency of the coupling field is adiabatically
swept through the resonance. After the passage, for δ > 0, θ → 0+ and
|φ2〉 is well approximated by |1〉: the atom is in its lower energy eigenstate.
Thus, if the dressed state does not change as the system traverses the avoided
crossing region, the population is reversed.

For the ARP to occur the frequency sweep rate is required to be high
(rapid) with respect to the relaxation processes in the system, and at the same
time slow enough so that the system can follow adiabatically the frequency
sweep. For the Zeeman sub-levels of the atomic ground state relaxation
mechanisms can be neglected. Thus there is only an upper bound on the
passage speed, which can be expressed as [Camparo and Frueholz, 1984]:

dδ

dt
<< Ω2

R. (5.4)

Figure 5.1 b) shows the dressed states of the 87Rb
∣∣∣52S1/2, F = 2

〉
manifold

in the presence of a constant magnetic field B0 = 30 G as a function of the
frequency of the applied RF field. During the passage, the atom initially in
the mF = 2 state passes twice through the avoided crossing region (circles)
and thus the population is twice coherently transfered between the Zeeman
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Figure 5.1: a) energy of a two level dressed atom without interaction (blue
dashed) and with ΩR = 1 (red) as a function of the detuning δ of the cou-
pling field. For large δ the dressed atom wave function and the corresponding
energy coincide with those in the absence of the interaction; b) dressed en-
ergies of the 87Rb F = 2 ground state in the presence of a 30 G bias field
as a function of the RF-field frequency. Red line describes the energy of the
state which for large δ coincides with the mF = 2 pure state; c) probability
to find the atom in the mF = 0 state.

states. For f = 20.92 MHz the probability to find the atom in the mF = 0
state is more than 95% (Fig. 5.1 c) ). The graphs were made for ΩR = 10
kHz. The passage would have to take longer than 40 ms in order to fulfill
the adiabaticity condition 5.4.

Technically, the radio frequency for the ARP will be generated from a
40 MHz arbitrary function generator from National Instruments ( NI PXI-
5406). The signal will be amplified to a few Watt RF-power and coupled to
the atoms with a single coil mounted inside of the vacuum chamber. This
coil was originally intended to be used for evaporating cooling.

5.2 Bragg diffraction of the condensate
One of the simplest atom interferometry experiments that can be imple-
mented in the existing apparatus is the Bragg diffraction of the condensate.
The Bragg scattering of matter de Broglie waves on a grating formed by a
standing light wave is in atom optic the analogon of a light diffraction on
solid structures. In both cases the incident beam must satisfy the Bragg
condition on the angle of incidence θ: dsinθ = nλ, where n = 0, 1, 2... is
the diffraction order, d is the grating constant (or half of the optical wave-
length of the standing wave) and λ is the wavelength of the incident light (or
the de Broglie wavelength λDB = h/p of the incident atom beam with the
momentum p).

The diffraction of a matter wave on the standing wave can be understood
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in terms of the position dependent phase shifts. Light tuned far from an
atomic resonance shifts the energy levels of the atoms (light shifts). An
energy shift applied for a time interval causes accumulation of a phase of the
atomic wave function. Thus, a standing light wave acts as a phase grating
for matter waves. Alternatively, the Bragg process can be also explained as
a coherent photon exchange between the counter propagating components of
the standing wave. Absorption of a photon from one beam by the atom is
followed by a stimulated emission into the other beam. Thus the atom gains
a discrete momentum change of 2~k along the k vector of the standing wave
(Fig. 5.2 a) ).

Figure 5.2: a) Bragg diffraction can be interpreted as an absorption of a
photon from one beam followed by stimulated emission into the other beam.
b) Proposed timing for the coherence study of the BEC.

The Bragg scattering was first observed at MIT [Mar et al., 1988] and first
demonstrated with atoms in a Bose Einstein condensate at NIST [Kozuma
et al., 1999]. The first order diffraction can be viewed as a coherent two-
photon transition from a ground state with an initial momentum to the
same ground state with a new momentum. As an atom pass through the
standing wave, its momentum-space wave function will oscillate between the
two coupled momentum states in a manner analogous to the Rabi oscillation
of atomic population between two resonantly coupled states. The effective
oscillation frequency is [Giltner et al., 1995]: Ωeff = Ω1Ω2/2∆, where Ω1,2 are
the resonant Rabi frequencies of the two Bragg beams, and ∆ is the detuning
of the beams from the optical transition. By adjusting either of both: the
interaction time or Ωeff the population can be coherently transfered from one
momentum state to the other with the efficiency varying from 0 to 100%. In
particular, applying a π

2 - or a π-pulse will transfer 50% and 100% of the
population respectively. Therefore, Bragg scattering provides us with the
critical atom-optic elements (beam splitter, mirror) needed for constructing
an atom-laser interferometer.

In contrast to the diffraction of an atomic beam, we plan to perform a
diffraction experiment on the stationary condensate (similarly as described
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in [Kozuma et al., 1999]). In this case the interaction time is not determined
by the time of flight through the standing wave. Rather the duration of the
laser pulse is varied. The Bragg condition on the angle of incidence becomes
a condition on the frequency difference δ of the two counter propagating laser
beams. For the first diffraction order the energy conservation requires:

~δ = ~2(k1 + k2)2

2m , (5.5)

where m is the atomic mass and k1,2 = 2π/λ1,2 are the wave numbers of the
two beams. For the D2 transition in Rb λ1 ≈ λ2 = 780 nm and 5.5 yields
δ = 2π × 15.1 kHz. This frequency difference can be experimentally realized
with two acousto-optic modulators.

Partial Bragg splitting of the condensate with a π
2 -pulse can be utilized

to investigate the decoherence time of the BEC (Fig. 5.2 b) ). The π
2 -pulse

applied after the free evolution time (TOF) will split the condensate. A
few ms after the splitting (this time should be short enough in order not
to separate totally the two clouds) an absorption image will be taken. For
TOFs shorter than the decoherence time, an interference pattern is expected
to be seen.

5.3 The QUANTUS II project
At the time when an end is brought to the adiabatic process of writing this
thesis, a new generation of young scientists is intensely working on the second
generation of the Quantus experiment. Their affords will be soon visualized
by assembling of a drop capsule, which is, briefly, twice smaller and can do
twice more than the existing one. To be more precise, the following aspects
are taken into consideration by the construction of the Quantus II apparatus:
Catapult capability
The new experimental setup is exclusively designed for being launched with
the catapult. This puts stringent demands on the construction of the capsule
(Tab. 2.1). In particular the net weight has to by reduced by 30% and the
payload volume squized by almost a factor 2. Further miniaturization of
the system is therefore required. Components with the highest potential for
the size reduction are: the board batteries and the computer, the vacuum
chamber, control electronics and the laser optical board. Concerning the
laser system, a hybrid master laser and a hybrid MOPA are being currently
developed at the Ferdinand-Braun-Institut für Höchstfrequenztechnik (FBH)
in Berlin. Hybrid systems [Paschke et al., 2002; Schwertfeger et al., 2004]
contain laser chip, beam-shaping optics, external resonators, and oscillator-
amplifier mounted on a micro-optical bench with the spatial size of several
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Figure 5.3: MOPA components on a micro-optical bench (schematic left
and the real size photo right). Picture courtesy of the Ferdinand-Braun-
Institut für Höchstfrequenztechnik (FBH) in Berlin.

mm (Fig. 5.3). Apart from the reduced volume, an obvious advantage of
miniaturized lasers is their low sensitivity to external acoustic vibrations.
This will be beneficial for the frequency stability during the catapult launch.
Increased number of atoms
Increasing the number of condensed atoms by at least one order of magnitude
is one of the most important issues of the QUANTUS II setup. As described
in reference [Wildermuth et al., 2004] with the use of a mesoscopic U-shaped
current-carrying Cu structure it is possible to collect more than 3×108 87Rb
atoms in a mirror magneto-optical trap without using external quadrupole
coils. This is an important achievement towards mass reduction, since our
MOT coils are the largest in the whole setup (Fig. 2.6). The authors of
[Wildermuth et al., 2004] are able to load roughly 2 × 108 atoms to the
magnetic Ioffe-Pritchard trap generated by a Z-shaped wire structure. The
maximal chip-current for the magnetic trap is up to 60 A. Finally the Bose-
Einstein condensation of 105 atoms occurs.

The new chip should additionally allow for further decompression of the
trapping potential characterized by sub-Hz harmonic trapping frequencies.
This will enable much slower expansion of the BEC released from the trap.
Observation times of a few seconds will be accessible with the catapult.

Another feature of the Quantus II setup is an atom loading mechanism
basing on a two-dimensional magneto-optical trap (2D-MOT) [Dieckmann
et al., 1998]. The atoms will be captured from the background gas in the
high pressure source chamber (Fig. 5.4). Cooling in two dimensions will
allow for the generation of a slow beam of cold atoms which will load the
mesoscopic U-MOT placed in a second, ultra-low pressure chamber. Due
to the absence of the Rb dispenser in this vacuum chamber the background
gas pressure can be reduced to 10−11 mbar. This promises to enhance the
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Figure 5.4: A compact double-MOT vacuum chamber for the QUANTUS
II experiment. Picture courtesy of Waldemar Herr (IQO Hannover)

lifetime of atoms in the magnetic trap and that of the condensate.
An important point in the design of the new vacuum chamber was ex-

tended optical access. Compared to the existing setup, the new chamber
provides input for Raman beams and possibly for the optical dipole trap.
Moreover, there are two perpendicular view ports for the CCD cameras to
increase the amount of information gathered with the absorption or fluores-
cence imaging.
Atom interferometry with the QUANTUS II
As discussed in chapter 1 atom interferometry is one of those fields of quan-
tum physics, which can benefit from the microgravity environment. The
Quantus II aims at inertial sensing experiments with the use atom interfer-
ometer with the quantum-degenerated gases. For such experiments a Raman
laser is required. The activities to construct a catapult capable Raman laser
has already begun in our group. One approach is to extend the existing
”block” design (Fig. 2.17) by an external cavity in order to minimize the
laser linewidth to approx. 100 kHz. Two such narrow band lasers could
be easily phase-locked and thus could serve as the Raman laser. Since the
frequency stability of an ECDL is extremely sensitive to the mechanical dis-
turbances, it is a challenge to design a laser that will operate reliably during
the catapult launch. An alternative is to use the current ”block” design with
a DFB Diode and to phase-modulate the light at 6.8 GHz (for instance with
a fiber phase modulator). The sidebands will be used selectively to injection-
lock two FP diodes. If necessary, the light will be amplified in a TA.
Quantum gas mixtures
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One of the most important modifications of the Quanus II setup is a possibil-
ity to perform interferometric experiments with two atomic species, bosonic
87Rb and fermionic 40K simultaneously. Applications such as a test of the
Einstein’s equivalence principle are scheduled. The equivalence principle has
been tested on Earth by comparing the gravitational acceleration of the two
isotopes 85Rb and 87Rb to a 10−7 accuracy level [Fray et al., 2004]. Using
diverse atomic species, whose mass differs substantially, can further improve
the current accuracy limit.



Appendix A

Harmonic frequencies in a
three-dimensional trap

Given a three-dimensional, time dependent, smooth1 potential U(x, y, z, t)

having a critical point at ~r0(t) =

 x0(t)
y0(t)
z0(t)

. Since the first partial derivatives
of U are equal zero at the critical point, Taylor expansion of U around ~r0,
up to the second order terms in ~r can be written in a form:

U(x, y, z, t)− U0(t) = 1
2 [x− x0(t), y − y0(t), z − z0(t)] Ω(t)

 x− x0(t)
y − y0(t)
z − z0(t)


(A.1)

with U0(t) = U(~r0(t)) and a symmetric second partial derivative matrix

Ω(t) =


∂2U
∂x2

∂2U
∂x∂y

∂2U
∂x∂z

∂2U
∂y∂x

∂2U
∂y2

∂2U
∂y∂z

∂2U
∂z∂x

∂2U
∂z∂y

∂2U
∂z2


x = x0(t)
y = y0(t)
z = z0(t)

also called the Hessian matrix of U or simply the Hessian.

Classification of the critical point

There is:

• a local minimum at ~r0 if all eigenvalues of Ω are positive,

• a local maximum at ~r0 if all eigenvalues of Ω are negative,
1continuous with continuous all first and second partial derivatives

93



94

• a saddle point at ~r0 otherwise (if none of the eigenvalues of Ω equals
zero).

Orthogonal diagonalization of Ω

The right hand side of the equation A.1 is a polynomial that is quadratic in
the variables x, y, z and is in general called a quadratic form associated to
the matrix Ω.

Spectral theorem yields: A square matrix Ω can be diagonalized via an
orthonormal change of basis if and only if the matrix Ω is symmetric. In
particular, all of the eigenvalues of a symmetric matrix are real and an or-
thonormal basis of eigenvectors can be found. These basis vectors are called
the principal axes of the matrix Ω.

In the other words, there is an orthogonal matrix P whose columns build
an orthonormal basis, and P−1ΩP = PTΩP = D, where D is a diagonal
matrix whose diagonal entries are the (real) eigenvalues λi of Ω. Thus Ω =
PDPT . If we denote d = ~r−~r0 we can find a new coordinate system defined

by r′ = PTd = P−1d =

 x′

y′

z′

 in which the potential has a particular simple

form:

U(x, y, z)− U0 =
= 1

2d
TΩd = 1

2d
TPDPTd = 1

2

(
PTd

)T
D
(
PTd

)
= 1

2r
′TDr′ =

= 1
2(λ1x

′2 + λ2y
′2 + λ3z

′2).
(A.2)

If all λi are positive, A.2 resembles the equation of an ellipsoid:

x′2

a2 + y′2

b2 + z′2

c2 = 1,

whose semi-axes a, b and c overlap with axis of the new primed coordinate
system. Furthermore, second partial derivatives ∂2U

∂x′2i
are equal to the eigen-

values λi of the Hessian. Thus, the harmonic frequencies of the trapping
potential along x′i-direction for a particle with the mass m are given by:

ωi(t) =
√
λi(t)
m

. (A.3)



Appendix B

Magnetic field of a finite piece
of wire

B.1 Infinitely thin conductor

Figure B.1: Magnetic field at the
place ~R = [x, y, z] generated by a fi-
nite piece of an infinitely thin wire
represented by the vector ~l.

A finite piece of an infinitely thin wire, situated at an arbitrary place
in space, can be defined by two vectors pointing at the ends of the wire:
~r1 = [r1x, r1y, r1z], ~r2 = [r2x, r2y, r2z] (Fig. B.1). The ”wire vector” ~l =
~r2−~r1 = [lx, ly, lz] shows the direction of the electric current flow. In order to
calculate the line integral given by the equation 3.16, one has to parametrize
integration path:

~l(t) =

 lxt
lyt
lzt

 ,t ∈ [0, 1], ~dl =

 lxdt
lydt
lzdt

 . (B.1)

It follows that ~r′ = ~r1 +~l(t) and

~r = ~R− ~r′ =

 x− r1x − lxt
y − r1y − lyt
z − r1z − lzt

 .
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The cross product ~r× ~dl has a particularly simple and symmetric form inde-
pendent of t:

~r × ~dl =

 ly(z − r1z)− lz(y − r1y)
lz(x− r1x)− lx(z − r1z)
lx(y − r1y)− ly(x− r1x)

 . (B.2)

Thus, equation 3.16 becomes:

~B(x, y, z) = µ0I

4π

 ly(z − r1z)− lz(y − r1y)
lz(x− r1x)− lx(z − r1z)
lx(y − r1y)− ly(x− r1x)


∫ 1

0

dt

[(x− r1x − lxt)2 + (y − r1y − lyt)2 + (z − r1z − lzt)2)]3/2
.

(B.3)

The integral in equation B.3 is an elementary one and has an analytic solu-
tion, which, for the sake of compactness, will not be shown here.

B.2 Infinitely flat conductor

Figure B.2: Infinitely flat wire with
the length l and width w laying in the
z = 0 plane parallel to the x-axis.

For the conductors with a finite cross-section, the Biot-Savart law can be
written in a more general form:

~B(~R) = µ0

4π

∫
V
d3~r′~I(~r′)×

~R− ~r′∣∣∣~R− ~r′∣∣∣3 , (B.4)

with integration performed over the entire volume V of the current carrying
conductor. ~I is a current density vector and has a dimension A/m2.

The field outside a cylindrical conductor is identical to that of an infinitely
thin wire centered on the cylinder axis. Microfabricated wires, however,
typically have a rectangular cross section with the hight much smaller than
the width (7× 30 µm in the Quantus chip). The field of such a conductor is
therefore well approximated by that of an infinitely flat wire with the zero
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height, but the nonzero width w, for which an analytical solution to integral
B.4 exists.

Consider a flat conductor with the length l and width w from the figure
B.2. For simplicity it is centered at the origin and oriented parallel to the x-
axis. In that case, the current flow vector inside of the conductor is constant
and can be expressed by:

~I = Iwêxδ(z), (B.5)
with δ(z) - the Dirac delta function, êx = [1, 0, 0], and the linear current
density Iw = I/w (in A/m). Substituting B.5 in B.4 and with
~R− ~r′ = [x− x′, y − y′, z], the equation B.4 becomes:

~B(~R) = µ0I

4πw

∫ l/2

−l/2
dx′

∫ w/2

−w/2
dy′

 0
−z
y − y′

 1
[(x− x′)2 + (y − y′)2 + z2]3/2

.

(B.6)
This surface integral has an analytic solution, which is elementary but lengthy
and will not be presented here. For x = y = 0 it simplifies to:

~B(z) = µ0I

4πw

 0
−4ArcTan( lw

2z
√
l2+w2+4z2 )

0

 . (B.7)

The field in this case has the y-component only, which is plotted in figure
B.3 (green) and compared to the field of an infinitely thin wire of the same
length (red). It is apparent, that only at the distances comparable to w
the two curves differ sufficiently. In the Quantus experiment, even a highly
compressed magnetic trap has its minimum at the distance z0 ≈ 100 µm from
the chip surface, still three times more than the width of the central wire.
Thus, for steep potentials the use of infinitesimally thin wire approximation
is fully justified. However, shallow trap is much more sensitive to the current
distribution so that the width and the form of the conductors should be
considered (note that the width of the wires providing current to the central
part of the Quantus chip reaches 1 mm - see Fig. C.1).

B.3 Approximating an arbitrary shape con-
ductor with a chain of thin straight wires

Although an analytic solution for the magnetic field of a flat conductor exists,
it is not very useful in practice. First, compared to a thin wire, it would be
much more difficult (though still possible) to parametrize a piece of a flat
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Figure B.3: Magnetic field ampli-
tude along ~R = [0, 0, z] for a finite
flat wire oriented as in figure B.2
with the width w = 50 µm and the
length l = 2 mm (green), and the
field of an infinitesimally thin wire
of the same length (red). The cur-
rent is in both cases I = 2 A. Note
the finite value of the flat wire field
at z = 0.

wire that is oriented arbitrarily in space. Second, current density is not well
defined at the connection of two rectangular coplanar flat wires. This limits
the flat wire approximation to the conductor pieces much longer than their
width. Last, the model deals with constant current densities within a single
piece, which is not the case for tapered conductors.

To omit the above limitations we model the strip lines of the Quantus
chip with a chain of equidistant straight thin wires (Fig. B.4). As input to
the routine which calculates the magnetic field, one just needs to specify the
number of thin wires and the coordinates of the pinch points at the right
and left edge of the conductor (Fig. C.1). Magnetic field of each single thin
wire is calculated according to formula B.3 and contributions from all thin
pieces are summed. Note that this method can be easily extended to the
conductors with a finite height and arbitrary shape of the cross-section.

Figure B.4: Flat conductor (left)
can be approximated by a chain
of equidistant straight thin wires
(black). The method can be straight-
forward applied to conductors with
finite height (right).



Appendix C

Technical drawings

Figure C.1: Wire structure of the Quantus chip. The coordinates (in mm)
of the pinch points at the left and right edge of the Z-wire are:
Leftedge=[(-6.2,9.2),(-6.2,7.6),(-0.9,5.87),(-0.9,2.7),(-0.96,-0.0015),(1.14,-
0.015),(1.12,-1.5),(2.2,-3.55),(3.15,-5.1),(7.5,-7.4),(7.5,-9.2)]
Rightedge=[(-5.5,9.2),(-5.5,8.45),(-0.2,6.67),(-0.2,2.6),(-0.91,1.48),(-
0.93,0.015),(1.16,0.015),(1.17,-1.48),(2.58,-3.5),(3.65,-4.26),(8.2,-6.8),(8.2,-
9.2)]
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Figure C.2: Lockbox circuit 1



101

Figure C.3: Lockbox circuit 2
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Figure C.4: AOM module
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Figure C.5: Optical components of the Quantus laser system
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Figure C.6: MTS master laser
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