Bastian Leykauf¹, Christian Freier¹, Vladimir Schkolnik¹, Matthias Hauth¹, Qingqing Hu², Manuel Schilling³, Hartmut Wziontek⁴, Hans-Georg Scherneck⁵, Markus Krutzik¹, and Achim Peters¹

leykauf@physik.hu-berlin.de

- 1 Institut für Physik, Humboldt-Universität zu Berlin, Germany
- Institut für Erdmessung, Leibnitz-Universität Hannover, Germany ⁵ Onsala Space Observatory, Chalmers tekniska högskola, Sweden
- ² Visiting student from National University of Defense Technology, Changsa, China
 - ⁴ Bundesamt für Kartographie und Geodäsie (BKG), Leipzig, Germany

The gravimetric atom interferometer GAIN is a mobile sensor that uses atom interferometry based on stimulated Raman transitions to measure Earth's gravity. It's performance has been tested against other state-of-the-art gravimeters in two comparison campaigns. To our knowledge, GAIN's long-term stability of 0.5 nm/s² is the best value of an absolute gravimeter published in literature.

ferometer phase with gravity:

 $\Delta \Phi = -\boldsymbol{k}_{\text{eff}} \cdot \boldsymbol{g} \cdot T^2 = \phi_1 - 2 \cdot \phi_2 + \phi_3$ Interferometer phase is encoded in

population of states: $P_{|F=2\rangle} = \frac{1}{2} \left[1 + C \cdot \cos \left(\Delta \Phi + \Delta \phi_{\text{chirp}} + \Delta \phi_{\text{offset}} \right) \right]$ (C: contrast, $\Delta\phi_{\text{chirp}}$: Doppler shift compensation, $\Delta\phi_{\text{offset}}$: fringe scanning)

Fluorescence detection

 Detection pulses with intermediate repumper light

path B

 Fluorescence light collected on photomultiplier tube.

 Variable phase offset $\Delta \phi_{\text{offset}}$ of last interferometer pulse for fringe scanning

Mobile setup

- physics package
- electronics rack

Laser system

- 780 nm ECDL and DFB lasers
- modular design

transport-stable setup

Cooling and preparation of atoms

Load some 10^{8 87}Rb atoms in 0.6 s in magneto-optical trap, cool to 2 - 3 μ K and launch with moving molasses technique

Select small vertical velocity spread (~150 nK) with Raman transition, discard other atoms, prepare in F=2, $m_F=0$ with microwave:

Active vibration isolation and Tip/Tilt stage

Modified minusK vibration isolation platform with active feedback control

Piezo Tip/Tilt stage:

- counteracting Coriolis effect
- active tilt stabilization by back-coupling into fiber (right)

Campaigns

Population P_{F=2}

Two comparison campaigns with relative superconducting (SG) and absolute falling cornercube (FG-5(X)) gravimeters [1]:

 $\Delta \phi_{offset}$

• Onsala Space Observatory (2015)

Sensitivity

Raman beams

Cooling, Detection, Blowaway F = 2

Repumper, Blowaway F = 1

Feb 11 Feb 12 FG-5X: GAIN: 95 nm/s²/√Hz 300-500 nm/s²/√Hz after post-correction

- Repetition time 1.5 s (FG-5: 10 s)
- GAIN phase noise dominated by vibrations of Raman mirror
- Post-correction [3] (PC) with data from accelerometer on vibration isolator

Stability

Variations of g due to tidal & atmospheric effects

- Allan deviation of residuals indicate white noise • Stability of 96 nm/s² / √ Hz and long-term stability of $5 \times 10^{-11} g$

Accuracy

 GAIN's gravity value slightly higher than reference/FG-5. Bias during both campaigns:

> Wettzell, 2013: $(62 \pm 64) \text{ nm/s}^2$ Onsala, 2015: $(32 \pm 39) \text{ nm/s}^2$

- Developed method to calculate effect of Raman wavefront distortions [2], still limiting contribution
- Systematic error budget as of 2016-02:

Systematic effect	Bias (nm / s²)	Error (nm / s²)
Raman wavefronts	- 28	± 22
Coriolis effect	0	± 15
Magnetic field effects	0	± 10
rf group delay	0	± 10
Self gravitation	+ 19	± 5
Reference laser frequncy	- 12 / (- 10)	± 5
Synchronous vibrations	0 / (+ 90)	$\pm 5 / (\pm 50)$
AC Stark shift (1pls)	0	± 5
Rb background vapour	+ 5	± 3
AC Stark shift (2pls)	0	± 2
Vertical alignment	0 / (- 1)	± 1
Total	- 16 / (+ 77)	± 32 / (± 61)

Juggling atom fountain for differential measurements

Goal:

- Interferometry with two clouds in different vertical positions for gravity gradiometry [4]
- Applications of gradiometers include underground and resource exploration, navigation and determination of the Newton's constant G [5].

Progress at HUB:

Wettzell (2013)

- Increased loading rate by juggling technique [6]
- Simultaneous interference fringes of both clouds
- Suppression of common-mode noise in the differential signal
- Differential phase can be extracted from ellipse fit even when a fringe fit fails

T = 5 mscloud 3 cloud 2 7 **.**⊆ 0.3 T= 15 ms, no vibration isolation ction 0.5 0.2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Phase offset $\Delta\phi_{ ext{offset}}$ / rad Atoms in F=2 (cloud 3)

References

- [1] Freier, Hauth, Schkolnik, Leykauf, Schilling, Wziontek, Scherneck, Müller & Peters. "Mobile quantum gravity sensor with unprecedented stability" Journal of Physics (2016)
- [2] Schkolnik, Leykauf, Hauth, Freier & Peters. "The effect of wavefront aberrations in atom interferometry"
- Applied Physics B (2015) [3] Le Gouët, Mehlstäubler, Kim, Merlet, Clairon, Landragin
- & Pereira Dos Santos. "Limits to the sensitivity of a low noise compact atomic gravimeter", Applied Physics B (2014)
- [4] Snadden, McGuirk, Bouyer, Haritos & Kasevich. "Measurement of the Earth's Gravity Gradient with an Atom Interferometer-Based Gravity Gradiometer", PRL (1998)
- [5] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli & G. M. Tino "Precision measurement of the Newtonian gravitational constant using cold atoms", Nature (2014)
- [6] R. Legere & K. Gibble. "Quantum scattering in a juggling atom fountain", PRL (1998)

This work is supported by the German Research Foundation DFG under grant numbers PE904/2-1, PE904/4-1. We thank the BKG, IfE and OSO for their contributions to the measurement campaigns.