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ABSTRACT

Understanding the structure of defects in crystalline materials is essential for modern
materials science. While most defect characterization involves the inverse and non-unique
problem of fitting possible structural models to experimental data, which are in many
cases average spectra from a variety of defects (Electron Paramagnetic Resonance (EPR)
Spectroscopy, Deep Level Transient Spectroscopy (DLTS), Photoluminescense Spectroscopy
(PL), etc.), being able to directly probe the atomic structure of single defects would also
provide their electronic as well as mechanical properties, since those can be determined
computationally, once the structure is known. This work will report on a new electron
diffraction technique to directly determine the periodicity of dislocation core structures as
well as a way to greatly enhance the accuracy of the forbidden reflection lattice imaging
(FRLI) technique to image individual structural point defects along partial dislocations.

Electron microdiffraction experiments with Silicon samples oriented along the [110]
direction will be described, which will give direct experimental evidence for the double
period reconstruction of the 90◦ and 30◦ partial dislocations. Also, Silicon and β-Silicon
Carbide samples with atomically flat (111) surfaces have been prepared. Perfectly smooth
surfaces are shown to be essential for imaging point defects such as kinks along partial
dislocations in these materials.

In addition to these experiments, advances in the theory of electron diffraction will be
reported. A new imaging technique called ”Atomic String Holography” will be introduced,
as well as a solution to the inversion problem in dynamical scattering theory based on a
new expansion of the matrix exponential of two non-commuting matrices, one of which is
diagonal.
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CHAPTER 1

INTRODUCTION

In the 20th century, which has also been labeled the information age, an avalanche in
the development of new methods and instruments for the scientific experimental verification
of until then only theoretical hypotheses and ideas has broken loose, and at the same time led
to a host of new theories founded on the newly won knowledge. Quantum theory has quickly
proven an extremely useful tool to describe very diverse phenomena with a fairly simple
”basis set” of physical laws, and the solution of many physical problems today depends not
so much on the discovery of new physical laws as it depends on the ability to accurately
describe the problem in the quantum-mechanical framework, making them ”computable”
by machines that are themselves a product of this rapidly increasing scientific knowledge.
It is for example possible to calculate ”real world” mechanical and electronic properties of
”virtual” materials, as long as we can come up with a model of atomic positions for them.
Predicting macroscopic properties of existing materials is therefore also possible, if we can
find atomic models for them. This is especially difficult, when extended defects are involved,
since defects by definition do not occur in a self-repeating crystal structure making it almost
impossible to examine them by crystallographic methods. But even the determination
of the atomic structure of perfect crystals is still a very difficult problem, especially for
crystals that cannot be examined by X-ray crystallographic methods because of their size
or radiation sensitivity. While X-ray diffraction patterns recorded under certain conditions
can be inverted using single scattering theory, the inversion problem of electron diffraction
patterns is much more complicated because of almost unavoidable multiple scattering due
to the much shorter elastic mean free path of electrons.

In this work I will discuss the application of selected transmission electron microscopy
techniques to find structural information of perfect and defective crystal structures, provid-
ing a direct link between experiment and currently computable atomic models. After giving
a short introduction into the field of electron microscopy and its theoretical background in
chapter 2 I will provide some necessary background about the theory of dislocations in chap-
ter 3, along with a list of methods used to examine their properties, showing the importance
of the work described in the following chapters.

In chapter 4 I will discuss the application of the Forbidden Reflections Lattice Imag-
ing (FRLI) method to image partial dislocation kinks with a resolution capable of dis-
tinguishing between different energetically possible kink structures and show that rough
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surfaces have limited previous work [1,2], while giving experimental proof that this problem
can be overcome. In chapter 5 I will show how an electron beam focused to an only a few
nm big spot can be used to determine the periodicity of the core of a partial dislocation
along the beam direction. Applying a new expansion for the matrix exponential of the
sum of two non-commuting matrices a focused electron beam can also be used to determine
the projected potential from convergend beam electron diffraction patterns, as shown in
appendix A. Finally I will present a new electron-holographic technique, which can be used
to image the local environment of atoms in a crystal structure in appendix B.

The work described in the following chapters has in part already been published or
submitted for publication:

• J. Spence, C. Koch ”Atomic String Holography”, Physical Review Letters 86 (24),
5510 (2001)

• C.Koch, J. Spence, C. Zorman, M. Mehregany and J. Chung ”Modelling of HREM
and nanodiffraction for dislocation kinks and core reconstruction”, Journal of Physics:
Condensed Matter 12, 10175 (2000)

• J. Spence, C. Koch ”Experimental evidence for dislocation core structures in silicon”,
Scripta Materialia, 45 (11), 1273-1278 (2001)

• J. Spence, C. Koch ”On the measurement of dislocation core periods by nanodiffrac-
tion”, Philosophical Magazine B 81 (11), 1701-1711 (2001)

• C. Koch and J.M. Zuo ”Comparison of multislice programs for HRTEM simulations
and the bloch wave method”, Microsc. & Microanal. 6, Suppl. 2: Proceedings (MSA
2000) Springer New York, p. 126-127

• C. Koch, J. Spence ”Reconstruction of the projected potential from a through voltage
series of dynamical electron diffraction patterns including absorption”, Microsc. &
Microanal. 7, Suppl. 2: Proceedings (MSA 2001) Springer New York, p. 914-915

• J. Spence, C.Koch ”Alchemi as Holography”, Microsc. & Microanal. 7, Suppl. 2:
Proceedings (MSA 2001) Springer New York, p. 350-351

• L.J. Allen, C. Koch, M.P. Oxley and J.C.H. Spence ”Inversion of dynamical electron
scattering to obtain the crystal potential using data from two thicknesses.”, Acta
Cryst. A57 (4), 473 (2001)

• C. Koch and J. Spence ”A useful disentanglement of the exponential of the sum of
two non-commuting matrices, one of which is diagonal”, submitted (2002)



CHAPTER 2

HIGH RESOLUTION ELECTRON MICROSCOPY AND

MICRODIFFRACTION

1. Introduction

In this chapter some of the general principles of electron microscopy will be discussed
as well as the theoretical background of electron diffraction theory and the two different
methods of dynamic electron diffraction simulation used in this work. Several different
Transmission Electron Microscopes (TEM) have been used in this study (For detailed infor-
mation specific to a particular microscope the reader is referred to its operation manual):

• Akashi Topcon 002B: 200kV High Resolution TEM with a maximum resolution of
1.8Å, LaB6 electron-source.

• Phillips CM200-FEG: 200kV High Resolution TEM with a maximum resolution of
2.2Å, coherent illumination due to the field emission gun (FEG). This microscope is
retrofitted with a scanning unit and two annular dark-field (ADF) and one bright-field
(BF) detector for use as a scanning transmission electron microscope (STEM).

• Phillips CM300-FEG-Ultra-twin: 300kV High Resolution TEM at Lawrence-Berkeley
National Labatory in Berkeley, CA. Coherent illumination due to the field emission
gun (FEG).

• LEO 912: 120kV TEM mainly used for convergent beam and selected area diffraction
work. This microscope is equipped with an Ω-shaped energy filter, which makes
quantitative electron diffraction possible. This microscope was used in this work for
the quantification of inelastic scattering.

• MIDAS: 100kV UHV VG-STEM with UHV sample preparation chamber and cold
field emission gun. Because of its ultra-high vacuum well suited for surface science
applications, but also microdiffraction due to its comparatively stable scanning elec-
tronics and low risk of contamination. This microscope has a host of analytical tools
(secondary electron detector, Auger spectroscopy, EELS, etc.) available, as well as an
extremely efficient CCD camera system and Angular Dark-field (ADF) imaging [3].
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• Hitachi: 300kV UHV-TEM at IBM T. Watson Research Center in Yorktown Heigths,
NY with a max. resolution of about 2.8Å. Its good vacuum makes the creation and
examination of atomically flat Si surfaces possible.

• JEOL4000: 400kV HRTEM with a maximum resolution of 1.7Å.

2. Experimental Apparatus and Modes of Operation

Given the wavelength of high energy electrons of just a few picometer and the possi-
bility of controlling their path by electric and/or magnetic fields makes this radiation ideal
for microscopy at atomic and even subatomic dimensions. Today electron microscopes are
with sub-Ångström resolution still the most powerful microscopes.

In this section we will introduce the basic principle of the (S)TEM along with the
different modes of operation used in this work.

2.1. Transmission Electron Microscope (TEM). Figure 1 shows the basic con-
figuration of a transmission electron microscope and ray diagrams for imaging and diffrac-
tion mode [4–6].

The electrons are being produced by either a Tungsten-, LaB6-, or a heated/non-
heated field emission gun (FEG), pass in some microscopes through a monochromator, and
are then accelerated to their final energy. It is of importance that the tip of the electron
source is as sharp as possible, ideally a single atom. The condenser lens system controls
the beam divergence angle α, which is ideally zero for imaging mode, but non-zero for
convergent beam electron diffraction (CBED) or scanning transmission electron microscopy
(STEM). In practice we will need to have some beam divergence even in imaging mode, and
especially when working at high magnification in order to keep the beam current reasonably
high.

The image or diffraction pattern is recorded on either film, imaging plates (IP), or a
CCD camera. Film is comparatively difficult to process and has a low dynamic range (about
8 bit). Imaging plates are a digital film with high dynamic range, recording on a logarithmic
scale, which makes them ideal for diffraction work. They are similarly inconvenient as film,
but are more quantitative and can be reused. CCD cameras record on a linear scale with
a dynamic range of normally 12 to 16 bit, and transfer recorded images very conveniently
directly into the computer where they can be processed and stored.

2.2. Microdiffraction (CBED and LACBED). As can be seen from the ray
diagram in figure 1b only beams that pass through the electron lenses at exactly the same
radius interfere with each other. Since the detector (film, IP, or CCD) can only detect the
intensity, but not the phase of the incident radiation, cylindrical lens aberrations have no
effect on the diffraction pattern and hence do not limit the resolution of the information
contained in diffraction patterns. In X-ray crystallography, several methods have been
developed using the information contained in one-dimensional rocking curves for finding
phases of structure factors from which then the charge density distribution of the scattering
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Figure 1. Ray diagram of a basic electron microscope. Depending on the type, some
microscopes have three (MIDAS) or even more projector lenses. The ray diagram is shown
for the microscope operated a) in imaging mode b) in diffraction mode. α is the convergence
angle of the electron beam incident on the sample and ds is the source size.
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crystal can be reconstructed [7–9]. These rocking curves are being obtained by mechanically
tilting the crystal.

High-energy electrons have a wavelength of just a few pm - much smaller than that
of even hard X-rays, which makes the Ewald-sphere very large, exciting many reflections
simultaneously, even if the Bragg condition is not exactly met. This feature allows us to
record all the data of a 2-dimensional rocking curve simultaneously with a single crystal
orientation. Instead of illuminating the specimen with a plane wave, the electron beam is
focused in a single spot in real-space, requiring a certain angular range in reciprocal space
according to the uncertainty principle. The geometry is illustrated by figure 2.

Figure 2. Illustration of the convergent beam electron diffraction (CBED) principle. The
sample is illuminated by a focused beam of convergence angle α defined by the condenser
aperture and its distance between to the spot the beam is focused at. The resulting diffrac-
tion pattern consists of disks, instead of spots, each representing a 2-dimensional rocking
-curve of that particular reflection. As shown in figure 3 the beam does not have to be
focused on the sample surface.

Because CBED patterns are insensitive to lens aberrations they can provide accurate
[10] information about the thickness of a specimen of known structure, Debye Waller factors
[11, 12], (low order) structure factors [13, 14], and even help to solve only partially known
structures [15,16]. In appendix A a new method for the direct inversion of CBED patterns
to the projected crystal potential will be introduced, making the determination of unknown
structures possible.

Because of the large Ewald sphere and the large number of excited reflections the
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maximum convergence angle α for which the diffraction disks do not overlap is fairly small,
especially for crystals with a large unit cell. Several methods have been proposed to extend
the angular range of CBED disks, such as combining CBED patterns from different crystal
orientations [17] as well as others [18–22].

Figure 3. Illustration of the large-angle convergent beam electron diffraction (LACBED)
or ”Tanaka”-method principle. By shifting the area selector aperture any one disk can be
recorded by itself without overlap of neighboring disks. The convergence angle can therefore
be larger than 1/2 the smallest ~g.

The geometry of the large-angle convergent beam electron diffraction (LACBED), or
”Tanaka” [21,22] method is shown in figure 3. By focusing the probe below the specimen, a
spot-diffraction pattern can be obtained in the plane of the area selector aperture. Using an
aperture of the proper size (less than the distance between the spots, which is determined
by the sample-aperture distance and the lattice constant of the specimen) a single CBED
disk can be selected. The convergence angle α of this disk can be as large, as the condenser
aperture allows. In fact, the condenser aperture can be removed to utilize the full angular
range of the illumination system of the microscope. The LACBED method has been used to
determine low-order structure factors [23], the Burgers vector of dislocations [24,25], study
the atomic displacement field around dislocations [26], the lattice mismatch in heterostruc-
tures [27], etc.. A method for the direct inversion of CBED and in particular LACBED
patterns to the projected crystal potential of the specimen will be given in chapter A.
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2.3. Annular Dark-Field Scanning Transmission Electron Microscope
(ADF-STEM). The STEM can in principle be viewed as an inverted TEM [5, 28, 29],
also because the critical electron optics responsible for image formation (in particular the
objective lens) are before the sample. The image is formed by the number of electrons
scattered with an angle greater than a certain θmin defined by the hole in the dark-field
detector as a function of the probe’s position on the sample. See figure 4 for the basic
geometry of the STEM.

Figure 4. Diagram of a basic scanning transmission electron microscope (STEM). The
electron beam is focused on the sample surface and scanned across it by a set of scan-coils.
The objective aperture determines the convergence angle α. Electrons that scatter with
an angle between θ1 and θ2 are being collected by the ADF detector and contribute to the
image

To illustrate the reciprocity of TEM and STEM let us consider the case of bright-
field (BF) STEM. Here the image is formed by the electrons hitting a disk-shaped detector
with a radius usually of the size of the hole in the ADF detector. If we invert the path of
the electrons by replacing the BF (point-like) detector with an imaginary electron source
and sample the exit face wave function at the top surface of the specimen by scanning a
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point detector across it we obtain in principle a conventional TEM (CTEM).
While the process of image formation in BF-STEM is analogous to that of BF-TEM

(if the BF-detector size is equal to the size of the objective aperture in the TEM) and
well understood, the debate whether ADF-STEM imaging is purely inelastic and therefore
incoherent and linear in thickness and atomic potential squared [30] or non-linear [31], is
not yet settled. In the linear imaging model according to Pennycook the image intensity at
any given probe position (x, y) is given by

I(x, y) = |Ψ(x, y)|2 ⊗ V (x, y)2, (2.1)

which is the convolution of the incident electron probe wave function with the 2-dimensional
projected potential of the object, also called object function. If this model is correct the
object function can be determined from the image by deconvolution with the (known) probe
function. It is assumed that the ADF-detector only collects incoherent high-angle scattering
produced by the 1s-electronic states of the atoms, and is therefore independent of bonding
effects, and with a small enough probe only scattering from atoms in a single column will
contribute to the image.

Hillyard, Loane and Silcox [32,33] have shown that channeling effects in the crystal
are very important, and that the assumption of negligible horizontal cross-talk between
atomic columns is invalid in most cases. A more realistic model taking into account chan-
neling has to consider the variation of the probe function with thickness [34], giving the
image intensity at thickness t as

I(x, y, t) =
∫ t

0
|Ψ(x, y, z)|2 ⊗ V (x, y, z)2dz (2.2)

which becomes

I(x, y, t) =
∫ t

0
|Ψ(x, y, z)|2 ⊗ V (x, y)2dz

for a z-independent potential, as in perfect crystals.
The image calculations in this work avoid this problem by computing the path of

both elastic and phonon-scattered electrons using a computationally very expensive, but
accurate algorithm based on Kirkland’s frozen phonon multislice program [35].

Many modern TEMs can also function as a STEM by running the microscope in
microdiffraction (see section 2.2 of this chapter) mode, focusing the electron beam on the
sample using the condenser lens system, and scanning the beam across the sample using
either the beam-alignment coils (as done on the CM200 microscope used in this work), or
a special set of scan-coils. The CM200 used for the experiments described in chapter 5
is equipped with two ADF- and one BF-detector which becomes exposed to the electron
beam, when the CCD camera is retracted.

3. Theory of High-Energy Electron Diffraction

3.1. Notation. Reading books on diffraction theory by two different authors, and
sometimes even different editions by the same author may be slightly confusing due to
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the different definitions of the wave-vector and reciprocal lattice vectors. The following
notations are being used throughout the literature:

|k| = 2π

λ
and |g| = 2π

d

|k| = 2π

λ
and |g| = 1

d

|k| = 1
λ

and |g| = 1
d

(2.3)

It is therefore important to define the conventions used throughout this work. We will use
equations (2.3), i.e. true reciprocal values, as is also done in [36].

Also we will define
Ψ~k

= e+2πi~k·~r (2.4)

as the plane wave propagating in the direction defined by the wave vector ~k. Table 1 defines
additional symbols which will be used throughout this work.

3.2. The Schrödinger Equation. The collision of electrons with atoms in a crys-
tal is in principle a quantum mechanical many-body problem with the Hamiltonian

H =
Nelectrons∑

j=1

e2

|r − rj | −
Nnuclei∑

j=k

Zke
2

|r −Rk|

(rj = position of all Nelectrons electrons in the crystal, Rk = position of all Nnuclei nuclei
each with the charge Zke), but because of the tiny mass of the electrons as compared to
any atom, and especially, since we are looking at high energy electrons and atoms in a
crystal, we may neglect the momentum transfer of the electrons to the crystal, and treat
the scattering process to a very good approximation as the scattering of the electron by the
static crystal Coulomb potential V (~r), which means that the wave function of the electron
Ψ(~r) has to be the solution of the time-independent Schrödinger equation

∇2Ψ(~r) +
2m|e|

h̄2 [E + V (~r)] Ψ(~r) = 0 (2.5)

Figure 5 shows the velocity of an electron versus the voltage it has been accelerated
by

β =

√
1−

(
m0c2

m0c2 + |e|E
)2

(2.6)

Electrons accelerated by 50kV are traveling already at 41% of the speed of light
and should be treated relativistically. We therefore need to replace the rest mass of the
electron by its relativistic mass m = γrm0 and adjust the energy E → E(1 + γr)/2, where
γr = m/m0 = 1 + |e|E/(m0c

2).
There are a variety of approaches to find Ψ(~r), given the crystal potential V (~r).

Spence ( [5] p. 148ff) gives an overview of the variety of these methods along with refer-
ences to all of them. Most computer programs apply either the Bloch wave method or the
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Symbol Description

c speed of light
v velocity of electrons
h, h̄ = h

2π Planck’s constant
a0 Bohr radius
E acceleration voltage for electron beam
λ0 electron wavelength in vacuum
λ = (λ−2

0 + U0)−1/2 ≈ λ0 electron wavelength in crystal
∇t 2-dimensional component of ∇ parallel to the surface
~k electron wave-vector of magnitude λ−1

kz component of ~k perpendicular to crystal surface
~kt 2-dim. component of ~k parallel to crystal surface
~g a reciprocal lattice vector
e charge of the electron
m0 rest mass of the electron
γr = 1 + |e|v/(m0c

2) relativistic correction factor
m = γrm0 relativistic mass of the electron
Ψ a complex-valued wave function.
V e(~r) real-valued real-space Coulomb potential.
V i(~r) imaginary absorptive potential.
V (~r) = V e(~r) + iV i(~r) complex crystal potential.
V~g = V e

~g + iV i
~g Fourier coefficient of V (~r) at rec. lattice vector ~g

U~g = 2m0|e|
h2 V~g (non-relativistic) electron structure factor

Table 1. Definition of the most common symbols used in this work.
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Figure 5. Relative velocity β = v/c of electrons vs. accelerating voltage

multislice algorithm (and its variations of real-space, reciprocal space, or a hybrid method
of both). The choice of algorithm depends on the problem to be calculated. In this work
both of the above mentioned methods have been used, and will be discussed in further detail
in this section. Because appendix A introduces an invertable expansion based on the Bloch
wave formalism, this method will receive a more detailed discussion than the multislice
method.

3.3. Bloch Wave Method. The Bloch wave method was first developed in 1928
by Bethe [37] and is based on direct solution of (2.5) using Bloch’s theorem

Φ(~r) = C(~r)exp(2πi~k · ~r) (2.7)

and since C(~r) has the periodicity of the potential, we can expand it in its Fourier-
components at the reciprocal lattice vectors of the potential

C(~r) =
∑

~g

Cgexp(2πi~g · ~r) (2.8)

Expanding the crystal potential we get

V (~r) =
∑

~g

Vgexp(2πi~g · ~r) (2.9)

We can expand the real space electron wave-function within the crystal as a sum of Bloch-
waves [38]

Ψ(~r) =
∑

j

ΨjΦ(j)(~r) =
∑

j

Ψj

∑

~g

C
(j)
~g exp(2πi(~k(j) + ~g) · ~r) (2.10)

With
∇2Ψ = −4π2

∑

j

Ψj

∑

~g

C
(j)
~g (~k(j) + ~g)2exp(2πi(~k(j) + ~g) · ~r) (2.11)
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The boundary condition that the momentum parallel to the surface of the crystal has to be
preserved fixes the component ~kt of every ~k(j) parallel to the crystal surface and makes it
equal to that of the incident beam, as long as all the ~g-vectors are parallel to the surface,
i.e. in the zero-order Laue zone.

We can now place expressions (2.10) and (2.11) for Ψ and ∇2Ψ back into the
Schroedinger equation (2.5) using the Fourier expansion for the potential (2.9):

∇2Ψ(~r) +
2m|e|

h̄2 [E + V (~r)]Ψ(~r) = 0

−4π2
∑

j

Ψj

∑

~g

C
(j)
~g (~k(j) + ~g)2exp(2πi[~k(j) + ~g] · ~r)+

2m|e|
h̄2

∑

j

Ψj

∑

~g


EC

(j)
~g +

∑

~g′
Vg−~g′C

(j)
~g′


 exp(2πi[~k(j) + ~g] · ~r) = 0 (2.12)

where we use the fact that

Vg−~g′exp(2πi[~g − ~g′] · ~r)C(j)
~g′ exp(2πi[~k(j) + ~g′] · ~r) = Vg−~g′C

(j)
~g′ exp(2πi[~k(j) + ~g] · ~r)

In practice we only need to sum over a finite set of ~g-vectors (beams). Since this equation
must hold for any value of ~r we must require that it also holds for every ~k(j) and ~g indi-
vidually. Simplifying expression (2.12) and including only N beams we get therefore for
j = 0 . . . N − 1 and ~g = ~g0 . . . ~gN−1

[
2m|e|

h2
(E + V0)− (~k(j) + ~g)2

]
C

(j)
~g +

2m|e|
h2

∑

~g′
V~g−~g′C

(j)
~g′ = 0 (2.13)

Also at high enough energies the incident beam energy (E) and momentum (|~k|) is much
greater than V0 or |~g| respectively so that

√
2m|e|

h2
[E + V0] = K ≈ kz

⇒ K2 − |~k + ~g|2 = K2 − k2
z − |~kt + ~g|2

= (K + kz)(K − kz)− |~kt + ~g|2
≈ 2K(K − kz)− |~kt + ~g|2

where kz is the component of the incident electron beam wave-vector perpendicular to the
crystal surface. Therefore (2.13) becomes, when divided by the relativistic correction factor
γr

[
2K

γr

(
K − k(j)

z

)
− |~kt + ~g|2

γr

]
C

(j)
~g +

∑

~g′
U~g−~g′C

(j)
~g′ = 0 (2.14)
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which is an eigenvalue problem and can be written in matrix form

γr

2K




|~kt+ ~g0|2
γr

+ U0 U~g0−~g1
· · · U~g0−~gN−1

U~g1−~g0

|~kt+ ~g1|2
γr

+ U0 · · · U~g0−~gN−1

...
...

...

U~gN−1−~g0
U~gN−1−~g1

· · · |~kt+ ~gN−1|2
γr

+ U0







C
(j)
0

C
(j)
1

...
C

(j)
N−1




=
(
k(j)

z −K
)




C
(j)
0

C
(j)
1

...
C

(j)
N−1




or
γr

2K
A(~kt, γr)C(j) =

(
k(j)

z −K
)

C(j) = γ(j)C(j)

where A is called the structure factor matrix.
Remembering from equation (2.10) that

Ψ(~rt, t) =
∑

j

Ψj

∑

~g

C
(j)
~g exp(2πi(k(j)

z t + [~kt + ~g] · ~rt))

=
∑

~g


∑

j

ΨjC
(j)
~g exp(2πik(j)

z t)


 exp(2πi[~kt + ~g] · ~rt)

which is the 2-dimensional Fourier transform of

Ψ̃(~kt + ~g, t) =
∑

j

ΨjC
(j)
~g exp(2πik(j)

z t) (2.15)

the whole vector of reciprocal space wave-function amplitudes ~̃Ψ(~kt, t) consisting of the
amplitudes for all the reciprocal lattice vectors ~g can be written in matrix form

~̃Ψ(~kt, t) = C
[
exp(2πik(j)

z t)
]
D

~Ψ (2.16)

where

C =




C
(0)
~g0

C
(1)
~g0

· · · C
(N−1)
~g0

C
(0)
~g1

C
(1)
~g1

· · · C
(N−1)
~g1

...
...

...
C

(0)
~gN−1

C
(1)
~gN−1

· · · C
(N−1)
~gN−1




[
exp(2πik(j)

z t)
]
D

=




exp(2πik
(0)
z t) 0 · · · 0

0 exp(2πik
(1)
z t) · · · 0

...
...

...
0 0 · · · exp(2πik

(N−1)
z t)






15

~Ψ =




Ψ0

Ψ1
...

ΨN−1




At t = 0 the diagonal matrix [exp(2πik
(j)
z t)]D becomes the identity matrix, and since

no electrons have scattered yet ~̃Ψ(~kt, 0) = δ~g,0, which means that we have the following
boundary condition

C~Ψ = δ~g,0 (2.17)

This equation is being satisfied, if ~Ψ is the mth column of C−1, where m is the index of the
reciprocal lattice vector for which ~gm = 0.

In a more general way we can define the incident electron wave-function ~̃Ψ(~kt, 0) as
a column vector of several incident plane wave amplitudes. For a single incident plane wave
with ~g = 0 this vector will consist of mainly zeros, and only a single non-zero value in its
mth row. The exit face wave function is then given by

~̃Ψ(~kt, t) = C
[
exp(2πik(j)

z t)
]
D

C−1 ~̃Ψ(~kt, 0)

= exp(2πiKt)C
[
exp(2πiγ(j)t)

]
D

C−1 ~̃Ψ(~kt, 0)

= exp(2πiKt)exp
(

πiγrt

K
A(~kt)

)
~̃Ψ(~kt, 0)

= exp(2πiKt)S~̃Ψ(~kt, 0) (2.18)

The intensity of spots in the diffraction pattern is given by

I~gn(~kt, t) =
∣∣∣∣
~̃Ψ(~kt, t)n

∣∣∣∣
2

=

∣∣∣∣∣∣

N−1∑

j=0

Sn,j
~̃Ψ(~kt, 0)j

∣∣∣∣∣∣

2

(2.19)

For an incident plane wave at ~gm = 0 (2.19) becomes

I~gn(~kt, t) = |Sn,m|2 =
∣∣∣∣exp

(
πiγrt

K
A(~kt, γr)

)∣∣∣∣
2

(2.20)

S is called the scattering matrix. The structure factor matrix A depends on the Fourier
coefficients of the projected potential of the specimen, the transverse component of the
incident electron wave vector ~kt and the relativistic correction factor γr. In order to calculate
the intensity of diffracted beams using the Bloch-wave method, one has to first construct
the structure factor matrix A, diagonalize it to obtain its eigenvalues γ(j) and eigenvector
matrix C, multiply the eigenvalues γ(j) by πiγrt/K, and take the modulus squared of the
mth column of the resulting S matrix.
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3.4. Multislice Algorithm. Based on the physical optics theory of Cowley and
Moodie [39] the multislice method is a numerical integration method to solve the Schrödinger
equation (2.5) by assuming that the wave function Ψ(~r) can be represented by a modulated
plane wave

Ψ(~r) = exp(2πi~k · ~r)Φ(~r) (2.21)

and validity of the high energy approximation (kz À |~g| ⇒ δ2Φ(~r)/δz2 ¿ 4πikzδΦ(~r)/δz)
so that we end up with a modified version of the Schrödinger equation

δΦ(~r)
δz

=

(
i∇2

t

4πkz
−

~kt

kz
· ∇t

)
Φ(~r) +

2m|e|i
4πkzh̄

2 V (~r)Φ(~r) (2.22)

If the electron beam is normal to the crystal surface (~kt = 0) then (2.22) reduces to

δΦ(~r)
δz

=
i∇2

t

4πkz
Φ(~r) +

2m|e|i
4πkzh̄

2 V (~r)Φ(~r) (2.23)

This first order differential equation in t can now be integrated numerically by ”cutting” the
sample in many thin slices parallel to its surface, reducing the potential in each slice to a 2-
dimensional one through integration over the slice thickness which separates the scattering
process into a kinematic scattering process and a Fresnel propagation through ”vacuum”
over the thickness of the slice, relating the wave function Φ(t + ∆t) to Φ(t). Doing this for
every slice will yield the wave function at the exit surface of the crystal, which becomes
exact for ∆t → 0. Figure 6 illustrates this procedure.

The propagation through a single slice is done in two steps (hybrid real- and recip-
rocal space method):

1. Transmission: multiplication of incident wave function with phase grating (in real-
space) or convolution in reciprocal space.

Φ(~r) → exp

(
2m|e|i
4πkzh̄

2

∫ t+∆t

t
V (~r)δz

)
Φ(~r) (2.24)

2. Fresnel propagation in reciprocal space: Fourier transformation Φ̃(~q) = FT(Φ(~r)),
multiplication with the Fourier transform of the Fresnel propagator

p(~q, ∆t) = FT[exp(i∇2
t ∆t/4πkz)] = exp(−iπ∆t|~q|2/kz) (2.25)

Φ̃(~q) → exp(−iπλ∆t|~q|2)Φ̃(~q) (2.26)

and inverse Fourier transformation Φ(~r) = FT−1(Φ̃(~q))

The slice thickness is thin enough if the total electron current (
∫ |Φ(~r)|2δ2~r) does not de-

crease significantly as the electrons propagate through the crystal.
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Figure 6. Diagram illustrating the multislice method. The 3-dimensional atomic potential
within each slice is integrated in z-direction to make a 2-dimensional phase-grating. The
real-space wave function of the incident electron beam is first multiplied by the phase grating
and then propagated through a vacuum slab of the thickness of the slice, since the analytical
solution of the Schrödinger equation for V (~r) = 0 is just the classical expression for Fresnel
propagation.

The detailed derivation using this approach can be found in [35, 39–43]. Self et
al. [38] use Huygen’s principle as the basis for their derivation. The multislice solution can
also be derived from equation (2.18) by use of the Zassenhaus theorem [40]

exp(Aε + Bε) = exp(Aε)exp(Bε) +
1
2
[B, A]ε2 + O(ε3)

which becomes exact for small ε.
One advantage of the multislice method is that the crystal potential does not need

to be periodic along the z-axis. This makes it possible to make the slices thinner than one
unit cell. In fact for the multislice simulations in chapter 5 a slice thickness of 0.48Å has
been used, which is less than the range of the atomic Coulomb potential, i.e. the ”size” of
an atom.

3.5. Image Formation. In the TEM operated in image mode the electrons
diffracted by the crystal are being focused by the successive lenses such as the objective
lens and projector lenses (see figure 1) to form an image. Aberration effects of electron-
optical lenses can be described as the convolution of the real-space exit face wave function
with the microscope transfer function, or as the product of the wave function in recipro-
cal space with the Fourier transform (χ(~q)) of the microscope transfer function, where ~q

is the 2-dimensional coordinate in reciprocal space, conjugate to ~r. This same formalism
also applies to the formation of the probe wave function in scanning transmission electron
microscopy (STEM), where the resolution of the scanned image depends mainly on the size
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of the electron probe. The image formed by an objective lens having axial aberrations up
to third order and neglecting temporal and spatial partial coherence effects is then given
by [44]

I(~r) = |ΨI(~r)|2 =
∣∣∣FT

(
Ψ̃(~q)exp(iχ(q))

)∣∣∣
2

(2.27)

χ(~q) =
2π

λ

[
λ2(q2
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]
(2.28)

where for a certain aberration coefficient Cn,m m denotes the order of aberration, 2π/n

denotes the smallest rotation angle that results in the same phase shift, and the suffixes
a and b mark mutually orthogonal contributions to the same non-cylindrically symmetric
aberration [44]. Table 2 gives the commonly used names for aberrations and how they
translate into the Cn,m-coefficients scheme.

Cn,m coefficient descriptive name

C1 defocus
C1,2 regular astigmatism
C2,1 axial coma
C2,3 3-fold astigmatism
C3 spherical aberration Cs

C3,2 2-fold astigmatism of Cs

C3,4 4-fold astigmatism

Table 2. Aberration coefficients and their descriptive names.

In addition to the aberrations of the objective lens the energy spread of electrons
leaving the gun ∆E, and instabilities in the in the lens currents ∆I cause a change in
defocus f = C1, which is proportional to the chromatic aberration coefficient Cc [5].

∆f = Cc

(
∆E

E
− 2∆I

I

)
(2.29)
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The effect of chromatic aberration on the image can be calculated by averaging over a set
of images produced by different values of incident beam energy E spread with a Gaussian
distribution of width ∆E around the average value E and the resulting change in focus f .
In the TEM case this effect, as well as effects due to spatial partial coherence (instead of
perfectly parallel incident plane waves the illumination spans an angular range of θc) can
be included analytically by introducing an exponential damping factor to the microscope
transfer function CTF (k) in reciprocal space [5].

CTF (k) = exp(iχ(k))exp

(
1
2
π2∆f2λ2k2 − π2u2

0q

)
(2.30)

where

q = (Csλ3k3 + ∆fλk)2 + π2λ4∆f4k6 − 2πiλ3∆f2k3 (2.31)

u0 =
√

2
θc

λ
(2.32)

In STEM we need to average over a set of diffraction patterns produced by a set of incident
electron probes with the same uncertainty in f .

Astigmatism and Coma are relatively easy to correct by combinations of magnetic
quadrupoles. Within the last decade also spherical aberration correctors for SEM [45],
TEM [46,47] and STEM [44] have been implemented successfully, reducing Cs to zero and
even negative values (there is still the problem of measuring Cs, if Cs → 0).

The resolution of a TEM image is determined by the width of the point-spread
function (PSF), or impulse-response function

PSF (~r) = FT (sin(χ(~q))P (~q)) (2.33)

where P (~q) is the pupil- or aperture function, which is 1 for wave vectors that pass through
the aperture, and zero otherwise.

P (~q) =

{
1 if |q|λ ≤ sin(α)
0 if |q|λ > sin(α)

(2.34)

Equations (2.2) and (2.1) both have in common that the STEM image contrast is related
to the probe intensity distribution, which is given by

Iprobe(~r) = |FT (exp(iχ(~q))P (~q))|2 (2.35)

Figure 7 shows a 2-dimensional plot of the impulse response function and the probe intensity
for E = 200kV, Cs = 0.7mm, α = 12.5mrad, df = −513Å. Comparing the two functions
it becomes obvious that the STEM probe is narrower, because it is the square of the wave
function amplitude. This is one of the reasons why it is generally believed that ADF-STEM
images have an inherently higher resolution than BF-TEM images with the same objective
aperture size.
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Figure 7. (color) 2-dimensional impulse response function (PSF (~r)) and STEM probe
function Iprobe(~r) for the same microscope parameters (E = 200kV, Cs = 0.7mm, α =
12.5mrad, df = −513Å). The scale in x- and y-direction is in Å.

The optical transfer function (OTF (~q)) for incoherent imaging is the Fourier trans-
form of the STEM-probe intensity Iprobe(~r). It characterizes the strength with which certain
spacial frequencies of the object function are being represented in the image, just like the
contrast transfer function (CTF (~q) = sin(χ(~q))) does for the coherent phase contrast im-
age. Aside from the spherical aberration of the objective lens, parameters like the beam
divergence angle α, and defocus f determine the shape of the STEM probe intensity distri-
bution. Most commonly used values for the defocus and objective aperture size are those
suggested by Scherzer (f = −√1.5Csλ, α = 1.5(λ/Cs)1/4), or Mory [48] which provide the
most ”compact” STEM probe:

f = −3
4

√
Csλ (2.36)

α = 1.27(λ/Cs)1/4 (2.37)

Figure 8 show a 1-dimensional cross-section through the center of the 2-dimensional
plots shown in figure 7 as well as the radial incoherent and coherent transfer functions
(OTF (q) and CTF (q) respectively). Because of nonlinearities due to the zero-crossings in
the CTF an objective aperture has to be inserted, ideally at the first zero of the CTF,
providing interpretability of the image, but limiting the resolution. Recently [49–51] this
limitation in TEM imaging has been overcome by computationally correcting for the effects
of the CTF using images recorded at several different foci, and resolutions of 0.8Åat 300kV
have been achieved [52].

4. Inelastic Scattering

Although the elastic scattering model described above provides a very good descrip-
tion of Bragg scattering, quantitative electron diffraction requires the treatment of inelastic
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Figure 8. a) 1-dimensional cross-section of impulse response function PSF (r) and STEM
probe intensity distribution, b) OTF (k) and CTF (k). The following microscope parameters
have been used for the plots: E = 300kV, Cs = 0.65mm. CTF(k) and PSF(r) were
calculated using the Scherzer focus of df = −513Å. Damping due to temporal incoherence
has been included in the CTF(k) and PSF(r) plots with ∆f = 20Å (see expr. (2.29)) while
the spatial partial coherence due to a beam divergence angle of θc = 0.25mrad was assumed.
The dashed vertical line indicates the size of the objective aperture which would be used in
this case. The STEM probe Iprobe(r) and OTF(k) have been plotted for a beam convergence
angle of α = 9.4mrad and defocus of f = −268Å, giving the most ”compact” probe [48].
For comparison the probe function of an aberration corrected STEM with Cs = 0.01mm,
α = 26.8mrad, and f = −33Å (dashed curve) has been included.
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scattering processes, which include the transfer of energy from the incident electrons to the
crystal and therefore alter its state. Such inelastic scattering processes can be described by
the scattering due to quasi-particles such as phonons (lattice vibrational modes), plasmons
(collective electron waves), and single electron excitations producing electron-hole pairs.

Inelastic scattering effects were initially accounted for phenomenologically by the
introduction of a complex periodic potential V i(~r) [53] and later justified theoretically by
Yoshioka [54], who provided a quantum mechanical treatment of the problem using the
tight binding approximation. Because absorption effects are non-local and their calculation
requires the computationally expensive evaluation of 3-dimensional integrals the absorptive
part V i(~r) of the crystal potential V (~r) was initially approximated as 10% of its real part
V r(~r), which gives in Fourier space

V~g = V e
~g + iV i

~g ≈ (1 + 0.1i)V e
~g (2.38)

based on experimental observations for simple crystal structures.
Howie [55] has shown that, to a good approximation inelastic scattering by plasmons

contributes only to V i
0 . Single electron excitations also contribute to V i

0 and low order
absorptive structure factors [56], but only of the order of a few percent [57]. For low
thickness the main contribution of high angle inelastic scattering is due to phonons. For an
incident electron with wave-vector ke and mass me scattering with a phonon of wave-vector
kph and frequency ωph(kph) the equations for conservation of energy and momentum are

h2k2
e

2me
=

h2k′2e
2me

+ ωph(kph)

~ke = ~k′e + ~kph

The optical phonon energy in Si is 0.063eV which means that mainly acoustic phonon modes
will be excited, since kT =0.025eV at room temperature. The energy loss experienced by
high energy electrons scattering with phonons is usually very small (less than 20meV [58])
while the scattering angle ∆~k = ~k′−~k can be quite large (see [59] for the angular distribution
of single phonon scattering events).

4.1. Measuring the Contribution of Inelastically scattered electrons. The
post-specimen Omega energy filter on the LEO 912 electron microscope provides the op-
portunity to select electrons within a well-defined energy-window and measure their contri-
bution to the diffraction pattern or image. However, since the energy loss of the incident
radiation due to phonon scattering is usually comparable to the energy spread of the elec-
trons leaving the LaB6 electron gun, single phonon scattering cannot be separated from the
purely elastic signal using this instrument. Figure 10 shows the distribution of scattered
intensity as a function of scattering angle in the elastic+phonon scattered channel as well
the unfiltered signal, measured from diffraction patterns as those shown in figure 9.

The graphs in figure 10 show that for thin enough specimen the highly inelastic signal
is comparable to, or even less than the sum of the elastic signal and quasi-elastic signal (with
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Figure 9. a) unfiltered and b) zero-loss energy filtered CBED patterns of the same specimen
area. The shaded area shows the portion of the pattern used for producing the graphs shown
in figure 10. The exact same area has been used for integration in both patterns in order
to make a comparison between them possible. The shape of the filtered pattern is due to
the Omega filter, which can only filter in one dimension and transmits patterns produced
by electrons of different energies in the second dimension as indicated by the arrow. The
recorded intensity is displayed logarithmically in the range 4000-18000 counts as recorded
by Fuji image plates.
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Figure 10. Averaged scattering intensity taken from diffraction patterns as those in figure
9 as function of scattering angle with and without the Omega energy filter. The CBED
patterns serve for thickness estimation. The intensity peaks at high angles are due to the
HOLZ ring and/or scattering off the bore of one of the projector lenses, which changes
between exposures due to beam drift. The dash-dotted lines indicate the position of the
regular HOLZ-ring as well as that of the ring expected for regions of double period recon-
structed dislocation cores, as described in chapter 5. Recorded on LEO912 at a temperature
of -164◦C .
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energy losses less than the width of the energy filter, mainly thermal diffuse scattering) at
high angles. Assuming that scattering due to plasmons and single electron excitations is in
the forward direction, we can recover the elastic and TDS signal from unfiltered data by
simply dividing by a constant for thin (<400Å) specimen. The experiments described in
chapter 5 will make use of this fact.

4.2. Thermal diffuse scattering (TDS). In 1965 Hall and Hirsch [60] devel-
oped a theory to calculate the contribution of thermal diffuse scattering to the absorptive
part V i(~r) of the scattering potential V (~r). Since its numerical evaluation, involving a
3-dimensional convolution of rapidly varying functions, is computationally very expensive,
and in the past computers were still too slow for it to be used very much, several authors
have calculated and tabulated absorptive scattering factors for most atomic species and
given isotropic Debye-Waller factors [57, 61, 62], provided approximate analytical expres-
sions based on the Doyle and Turner [63] expansion of the atomic scattering factors [64],
or wrote computer programs allowing any isotropic Debye-Waller factor to be used [65].
Alternative models for describing phonon scattering have been proposed by Rez [66], Wang
and Cowley [67], Wang [68], Dinges and Rose [69], Anstis [70], Amali and Rez [59], and
others.

While absorptive scattering factors (equation 2.38) can account for scattering of
electrons out of the elastic channel, i.e. the missing electron intensity in directions of elastic
Bragg scattering, calculating the angular distribution of the inelastically scattered electrons
requires a more complicated model. Phonon scattering is of particular interest, since it is
responsible for most of the high-angle scattering forming the image in high-angle annular
dark-field scanning transmission electron microscopy (HAADF-STEM).

The scattering amplitude for the wave vector ~q due to collective lattice displacements
(phonons) can be described simply as the difference between scattering off a crystal in which
every atom at position ~rj is displaced by a small vector ~uj and the crystal with every atom
at its equilibrium position ~rj

fTDS(~q) =
∑

j

fel
j (q) [exp(2πi~q · [~rj + ~uj ])− exp(2πi~q · ~rj)] (2.39)

Squaring this expression in order to obtain the number of electrons scattered with the wave-
vector ~q and averaging over time and the number of atoms in the crystal gives us for a single
atom per unit cell [59]

[
fTDS(q)

]2
=

[
fel(q)

]2
[
1− exp

(
−8π2u2

(
q

2

)2
)]

=
[
fel(q)

]2
[
1− exp

(
−M

(
q

2

)2
)]

(2.40)

where u2 is the mean square displacement of the atoms, and the term M = 8π2u2 is called
the Debye-Waller factor. The general expression for any number of atoms per unit cell is
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given by Hall and Hirsch [60]. In the harmonic approximation u2 is given by [71,72]

u2(T ) =
h̄

2m

∫ ωmax

0
coth

(
h̄ω

2kBT

)
g(ω)
ω

dω (2.41)

where m is the atomic mass, g(ω) the phonon density of states and ωmax the maximum
phonon frequency. Gao and Peng [73] have parameterized expression (2.41) for 68 elemental
crystals using experimental measurements of phonon density of states obtained from neutron
scattering data, where available. Figure 11 shows a plot of u2 vs. the temperature.

Figure 11. Mean square atomic displacement of atoms in a Si crystal as a function of
temperature. The product of the atomic displacement u2 and the scaling factor 8π2 is
called the Debye-Waller factor.

A more transparent, but rather ”brute force” method, proposed by Loane Xu and
Silcox [74], the frozen phonon approximation, which starts with expression (2.39) and inte-
grates it numerically is based on the assumption that a single high-energy electron passing
through the specimen at about half the speed of light can only probe a single ”snap-shot”
of the vibrating crystal, instead of a time averaged crystal potential as assumed for the
derivation of equation (2.40). The image or diffraction pattern is then produced by aver-
aging over many such ”snap-shots”, in each of which the atoms are slightly displaced from
their equilibrium positions. These displacements can be calculated very accurately using
molecular dynamics [75], or experimental phonon dispersion curves [76] and corresponding
atomic displacements according to the dynamical theory of crystal lattices developed by
Born and Huang [77]. Figure 12 shows simulated CBED patterns for a Si (110) specimen
of 960Å thickness after averaging over an increasing number of different frozen phonon
configurations (Einstein model) at room temperature.
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Figure 12. Multislice CBED simulations of Si (110) including thermal diffuse scattering
(TDS) according to the Einstein model. The sample thickness is 960Åthickness, beam
energy 100kV, and the beam divergence angle α is 6 mrad. The pattern is plotted after a)
1, b) 4, and c) 20 iterations and becomes less and less noisy and finally converges.

For HRTEM and STEM imaging it has been shown [75,76] that the difference of the
phonon contribution calculated according to the exact phonon distribution model or a simple
Einstein model, in which atoms are displaced, as if they were independent, uncorrelated
harmonic oscillators, to the image is insignificant. However Muller et al [76] were able to
show that the fine structure in the Kikuchi bands of CBED patterns can be reproduced
very accurately using the parameter-free detailed phonon model. These features in the
diffration pattern cannot be calculated using the Einstein model, which involves a free
parameter, the average vibrational amplitude per atom species present in the crystal. The
vibrational amplitude used for the simulations based on the Einstein model can be fitted
to the scattered intensity distribution at high angles (as plotted in figure 10), which is very
sensitive to TDS. Comparing the ratio of the integrated intensity in the FOLZ-ring and the
interpolated background signal for the same scattering angle with that of simulated patterns
a RMS vibrational amplitude of 0.064Å has been determined for Si at 95K. Further details
of this experiment are given in chapter 5.

The fact that high angle electron scattering is dominated by TDS, i.e. a inelastic
and therefore incoherent scattering process, and the scattering from a single atom potential
is proportional to the square of the atomic number Z, as given by the Mott formula

(
fel(q/2)

)2
=

(
2
a0

[Z − fx(q/2)]
(q/2)2

)2

∝ Z2 for large q (2.42)

has given the HAADF-STEM technique also the name Z-contrast imaging. Choosing the
inner angle αi of the ADF detector is a trade-off between efficiency (not enough scattering
to very high angles) and interpretability (non-linear imaging due to interference effects of
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coherently elastically scattered electrons at low angles). Assuming equal probability for
Bragg-scattered and non-scattered electrons to be scattered to high angles by phonons [59]
and a value for αi that lets us collect mainly the TDS signal, we can assign a certain
probability pTDS with which electrons traveling at angles less than αi scatter with phonons
to some angle greater than αi. The probability that these electrons scatter back to angles
less than αi is assumed to be negligible, and no matter whether these electrons are again
Bragg- or TDS scattered, they will contribute to the ADF signal. This means that the
current IBF of electrons not potentially contributing to the ADF signal is reduced at a
constant rate as the electrons pass through the crystal.

δIBF

δt
= −pTDSIBF (t) (2.43)

⇒ IBF (t) = IBF (0) exp(−pTDSt)

IADF (t) = IBF (0)− IBF (t) = IBF (0)
[
1− exp(−pTDSt)

]
(2.44)

This thickness dependence of the intensity collected by the ADF detector has been tested
for Si(110) using multislice simulations and the frozen phonon approximation, as shown in
figure 13 for different inner cutoff angles αi and two different temperatures. Figure 14 shows
the derivative dI/dt of the intensity shown in figure 13 in order to make oscillations in the
signal more visible. The simulations were done for an aberration corrected 100kV STEM
with Cs = 0.05mm, α = 22mrad, and df = −122Å. As already established experimentally
by Howie [78] and later computationally by Hillyard and Silcox [33] 40mrad seems to be a
good choice for Si, avoiding most of the coherent signal, but still very efficient in collecting
the TDS signal. Figure 14 also shows that assuming an exponential decay of IBF with
thickness (equation 2.43) can only be true in a first order approximation. The following
form of IBF gives a more accurate description

IBF (t) = IBF (0) exp(−pTDSt) [1 + α cos(2πt/ξ)] , (2.45)

where α and ξ are free parameters that depend on the inner angle of the detector and the
material.

However, this result is in contrast to the findings of Nellist and Pennycook [79] who
assume that TDS requires prior coherent Bragg scattering, and the ”source current”, out
of which electrons will scatter into high angles, oscillates with thickness t as

Icoh(t) ∝ e−σt [1− cos(ξt)] (2.46)

Again, assuming a probability of TDS scattering pTDS we can integrate the current of
phonon-scattered electrons in thickness and obtain

ITDS(t) =
∫ t

0
pTDSIcoh(t′)dt′

∝ pTDS



(1− e−σt)−

(
1 +

σ2

ξ2

)−1 [
σ

ξ
e−σt sin(ξt) +

σ2

ξ2
(1− e−σt cos(ξt))

]
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Figure 13. (color) Multislice simulation of the intensity collected by different ADF detectors
as a function of thickness. The ADF detectors collect scattering up to an outer angle of
200mrad, and inner angles between 23 and 145 mrad. One of the detectors (HOLZ) only
collects scattering into a narrow annulus around the first order Laue-ring. The mean square
atomic displacement is a) 0.044 Å and b) 0.076 Å (room temperature)
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Figure 14. (color) Multislice simulation of the differential intensity dI/dt collected by dif-
ferent ADF detectors as a function of thickness. The mean square atomic displacement is
a) 0.044 Å and b) 0.076 Å (room temperature)
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This results implies thickness-oscillations in the TDS signal, which cannot be confirmed
by the data shown in figure 13. The oscillations seen in figure 13 are most likely due to
contribution of elastically scattered electrons reaching the ADF detector, because of their
dependence on the size of the hole in the detector. Nellist and Pennycook [79] do not give
any estimate for the magnitude of parameters in expression (2.46) ξ and σ, but propose to
fit their expression to simulations, such as those shown in figure 13.

Conventional electron scattering calculations using Debye-Waller factors, which as-
sume that each electron ”sees” an average potential of the vibrating crystal, are not able
to reproduce the correct distribution of wave-vectors of electrons that have scattered with
phonons, in particular, these calculations can never produce features like Kikuchi bands.
This leads to the question, how accurate quantitative CBED simulations based on this
theory, and the low order structure factor measurements derived from such, are. Since
the distribution of phonon inelastically scattered electrons can be simulated very accu-
rately using phonon dispersion data obtained by neutron scattering [76], or by ab-initio
molecular dynamics simulations, the phonon background can be calculated as the difference
between frozen phonon multislice simulations and the standard multislice method using
Debye-Waller factors and an optical potential. The high-angle peak of phonon-scattering
suggests a parameterization of the strength of the Kikuchi bands with atomic scattering
factors, especially high-order ones. That will allow Bloch wave calculations to accurately
incorporate the phonon background. This method will also allow the exact treatment of
HOLZ effects. The accurate calculation of HOLZ lines requires the precise knowledge of high
angle scattering factors, which can be calculated with neutral atom Hartree-Fock methods,
and the Debye-Waller factor, which is often times not known very accurately. Calculating
the phonon background with the frozen phonon multislice method and the exact phonon
modes (obtained from phonon dispersion curves, or ab-initio simulations) can give us very
accurate results for high angle thermal diffuse scattering (TDS) and therefore also HOLZ
effects. Comparing frozen phonon simulations with conventional multislice simulations us-
ing the same atomic scattering factors allows us to identify high angle scattering solely due
to TDS, and a Debye-Waller like parameterization of temperature effects for the atomic
scattering factors can be found, which would be based on true dynamical scattering theory.

5. The Computational Tool: S-TEM

Due to dynamic scattering effects which are almost impossible to avoid in electron
diffraction the imaging process is non-linear, and TEM images can only be interpreted accu-
rately by matching them with simulated images, especially if dynamic effects like forbidden
reflections (chapter 4) are used to form the image. The ADF-STEM technique was initially
developed to allow easy and straight-forward image interpretation according to a linear
imaging model [80–82], in which the (known) probe intensity distribution is being convo-
luted with the object function, which can then be retrieved by deconvolution. However,
as already shown in the previous section, this is an over-simplified model of the imaging
process. This means that accurate image simulations require fully dynamic calculations,
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including thermal diffuse scattering, especially, if the annular dark-field detector is tuned
to one of the HOLZ rings as in chapter 5.

There exist a number of free as well as commercially available software based on
the multislice algorithm for conventional TEM image and diffraction pattern simulations
(for a comparison of a few of them see [83]). Kirkland [35] published the source code for a
program that can be used for STEM calculations, but this program is rather slow and unable
to calculate effects such as those essential for the work described in chapter 5. Starting with
the source code of the TEM image simulation program autoslic published by Kirkland [35] I
developed the program S-TEM , which is designed to perform conventional TEM as well as
STEM image calculations and CBED simulations. In this section I will first explain some of
the numerical details important for STEM image simulations, which have been incorporated
in the program S-TEM , that I wrote and performed most of the image simulations shown
in subsequent chapters with, and later give an overview of the user-friendly features and
versatility of this code.

5.1. Details of STEM image simulation. Very much attention has been paid
to produce STEM image simulations as accurate (but yet fast) as possible, by trying to
avoid as many approximations as possible. The following list gives an overview of some of
the details of this implementation:

• Frozen phonon approximation for TDS simulation.

The frozen phonon approximation has been shown to reproduce the full diffraction
pattern, including its thermal diffuse background, and even the phonon-mode related
fine-structure within the Kikuchi bands, very accurately [76]. Since ADF-STEM image
contrast is mainly, if not purely produced by TDS, it is important to incorporate
phonon scattering as accurately as possible. However, for calculations, which do not
require this degree of accuracy inclusion of temperature effects using Debye-Waller
factors is also available.

• Electron propagation is always normal to potential slices.

Most codes use the following modified version of the propagator function (2.25) to
account for specimen tilt [84].

P (~q, ∆t, θ) = exp(−iπ∆t|~q|2/kz + 2πi∆t(qx tan θx + qy tan θy))

which is basically a translation of the slices against each other, and is therefore only
valid for very small angles. This approximation is being avoided by always cutting the
potential slices perfectly perpendicular to the direction of the incident beam, which
is only possible because of the approximation avoided by the next item.

• Slices can be extremely thin.

The multislice algorithm becomes exact only in the limit of very thin slices. However,
most codes (e.g. [35]) project the full range of the Coulomb potential of an atom
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into a single slice, which means that slices cannot be made thinner than about 1-
2Å, and they should always coincide with lattice planes, if these slices shall truly
represent the crystal potential. Sacrificing execution speed, S-TEM calculates the true
3-dimensional potential distribution and numerically integrates the potential from the
bottom to the top surface of every slice, which can now have any desired orientation.
This allows us to reduce the slice thickness in the multislice calculation without limits
until convergence is reached. It is also essential for simulating TDS diffraction effects
caused by the z-components of lattice vibrational modes, or periodicities in atomic
displacements along the z-direction, as is the topic of chapter 5.

• Correct treatment of Chromatic aberration.

Chromatic aberration Cc incoherently affects the defocus and cannot be included
in the incident probe wave function for STEM simulations, instead the result from
incident electrons with slightly different energies needs to be integrated over in the
detector plane. Figure 15 shows how the incident probe intensity distribution varies
with only slightly different values for the electron energy (dE is the deviation from
the accelerating voltage, which is 100keV in this case).

• Very fast and general Fourier transform algorithm.

FFTW, which stands for ”Fastest Fourier Transform of the West” [85] is a public
domain fft library which can handle arrays of any size, i.e. it is not bound to powers
of 2 only, but has special routines for array lengths being products of powers of
2,3,5,7,11, and 13, and a general purpose routine for any other number. This makes
the choice of an optimum array size for the wave function propagation possible that
is big enough to avoid effects due to a finite super-cell, and at the same time small
enough to keep the calculation time short.

• Efficient sequence of multislice steps.

In order to calculate the intensity integrated over the area of the ADF detector for a
specific beam position, i.e. the value of a single pixel in the STEM image, one has to
propagate the electron wave function through an area of the sample about 30 Å× 30 Å.
Calculating the projected potential is very time consuming, and doing it for every pixel
anew would be a waste of time. Instead S-TEM calculates the projected potential for
the whole area of the sample, and propagates the electron wave-function only through
a small portion of it. In fact a frozen phonon configuration is generated for the whole
sample at once, and the intensity reaching the ADF detector is computed with the
same configuration for every pixel, before a new random frozen phonon configuration
is generated. This is a valid approach, as long as the final intensity is determined by
enough of these iterations.

• Efficient implementation of electron source size effects
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For a fixed beam position the intensity collected at the STEM detector is the sum
of scattered electrons stemming from different locations around the electron emitting
area of the electron source. The diameter of this area is defined as the source size
and is in the Å-range, depending on the microscope and condition and alignment
of the electron gun. For a finite sized objective aperture (or condensor aperture
in a TEM/STEM) this integration over different source positions is equivalent to
an integration over different beam positions over the same area. Since we need to
calculate the scattered intensity for every beam position anyway, source size effects
are incorporated by convoluting the final image with a round top-hat like function of
the same diameter as the source.

• Scalable to any size problem and computer.

The program is designed to utilize as much memory as the user wants to allow for it.
If S-TEM is run on computers with less memory, it will be less efficient and therefore
slower, but not less accurate.

5.2. S-TEM output file. Along with image files in Tagged Image File Format
(TIFF) S-TEM also produces an hypertext meta-language (HTML) output file like the one
in figure 16. It shows simulated high-resolution annular dark-field (ADF) and bright-field
(BF) STEM images of the double period reconstructed 90◦ partial dislocation core in Si
along the [110] direction at 0.5 × 0.5Åpixel size. With the proper command in the input
file these results can automatically be posted on a website, after every iteration of the
frozen phonon approximation process, which enables the user to monitor its progress from
anywhere in the world, and also the results to be shared with people around the globe, as
has been necessary in this work.

S-TEM accepts a large number of parameters that can be adjusted and are being
passed to the program via an input file in ASCII-format. Table 3 explains those parameters
shown in figure 16.

An unlimited number of ADF and BF detectors can be configured. The inner and
outer radius of the detector is displayed to the left of each image. The 2 black wedges in the
diffraction pattern on the right (displayed on logarithmic scale, because Gamma=0) indicate
the size and position of the first detector, which, of course covers the full circle and not just
two 45◦ arcs. Positioning the cursor over any of the pixels in the STEM images will cause
that particular pixel to change to the color red, and the diffraction pattern corresponding
to that beam position will be displayed on the right. In figure 16 the cursor has been placed
close to the core of the 90◦ partial dislocation which produces a bright half-order Laue ring
in the diffraction pattern (see chapter 5 for further details).

The energy deviation histogram (bottom right in figure 16) can be seen again in
figure 15, which shows that portion of the HTML output file produced by S-TEM for three
different cursor positions. This histogram is also ”active”, in that moving the cursor across
it will cause the blue square to follow its movement and the probe intensity plot to be
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Figure 15. (color) Electron beam probe intensity distribution (top) as function of energy
deviation. The spread in energy produces a spread in defocus, caused by the Chromatic
Aberration Cc according to equation (2.29). The energy deviation follows a Gaussian dis-
tribution with full width at half max defined in the input file. Each square in the bottom
plots represents a value of dE and corresponding defocus, which will be averaged over in
the simulation. The blue square indicates the value of dE, for which the incident probe
intensity is plotted on the top

updated for the different values of dE used in the simulation. Small energy deviations
(central column of histogram) will be included first in the calculation, and the largest ones
(far left and right columns) last.



36

parameter description

thickness thickness of the simulated sample in Å
v0 electron probe energy in keV
runs averaged over number of different frozen phonon configurations used
Gamma Image scaling coefficient for display of diffraction patterns

Idispl = log(I), if γ = 0, and Idispl = I1/γ otherwise.
CS objective lens spherical aberration in mm
C5 second order spherical aberration in mm
Cc chromatic aberration in mm
defocus main defocus in Å(for dE = 0eV ).
aperture condenser aperture in mrad
T sample temperature in K
TDS TDS included in simulation (yes/no)

if TDS=”no”, a Debye-Waller factor is used.
scan region area of the sample over which the probe will be scanned in Å
resolution true size of pixels shown in the images in Å
wave function size array used for calculating intensity for every image-pixel

Table 3. Simulation parameters used by the program S-TEM and their description.
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Figure 16. (color) Screen shot of the output of the S-TEM program for a STEM calculation
of the 90◦ partial dislocation core for an aberration corrected 100kV VG-STEM.



CHAPTER 3

DISLOCATIONS AND PARTIAL DISLOCATIONS IN

SILICON

1. Introduction

Although atomic models for dislocations in crystals of diamond-like structures (the
most important semiconductors, like Si, Ge, GaAs, etc. fall into this class) have been
proposed since the 1950’s [86], a recent (2000) review article by Robert Jones [87] is entitled:
”Do we really understand dislocations” and concludes with the statement that ”it is clear
that dislocations in Si, in spite of almost 50 years of effort, still possess many unexplained
features.” [87].

Probably the first suggestion of dislocations as the mechanism of plastic deformation
in metals was made by Mügge [88] and Ewing and Rosenhain [89] in the late 19th century,
even before knowledge of the crystalline structure of metals had been established [90]. The
connection between the postulation of dislocations as crystalline defects and the developing
field of elasticity theory [91,92] has not been made until the late 1930’s. The development of
X-ray diffraction techniques established the crystalline nature of many materials and gave
the first experimental technique to directly observe dislocations.

2. Direct Observation of Dislocations

Direct observation of dislocations has already been possible in the 1950s, first only
in transparent crystals, like AgBr and NaCl [93, 94], or by a very clever method of letting
copper atoms form precipitates along dislocations in Si by a special etching and annealing
procedure and imaging them with infrared light [95]. Hirsch, Horne, and Whelan were
the first to observe dislocations directly by high resolution electron microscopy (HRTEM)
and produce a motion picture of moving dislocations in Al [96]. Ray and Cockayne [97]
showed, that 60◦ edge dislocations in Silicon dissociate into Shockley-partials, and recently
Kolar, Spence, and Alexander [1, 2, 98] recorded the movement of kinks along a partial
dislocation at a resolution of 0.33nm using HRTEM and deduct kink formation Fk and
migration energy Wm from their velocity and density (see also [99–101]). Probably the
highest resolution images obtained from dislocations have been recorded by 100kV (Batson
[102]) and 300kV (Pennycook [103]) scanning transmission electron microscopy and through
focus reconstruction of images recorded with a 300kV TEM (Kisielowski [104]).
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A possible drawback of the TEM is that specimen need to be very thin because of
the comparatively short inelastic mean free path of high energy electrons. X-ray topogra-
phy [105] is therefore a complementary method, having much lower resolution and magni-
fication, but allows dislocation phenomena to be observed in their ”natural” bulk crystal
environment. Using electron radiation for the observation of dislocations in semiconduc-
tors can also lead to effects like radiation enhanced dislocation vibration (REDV) [106] in
addition to the enhancement of dislocation glide due to radiation in general [98,106].

In chapters 4 and 5 I will discuss two different methods of direct observation of certain
properties of dislocations. First in chapter 4 a method of accurately tracing the boundary
of a stacking fault, formed by a 60◦ dislocation dissociated into two partial dislocations will
be introduced, and in chapter 5 a method for the direct measurement of dislocation core
periodicities will be discussed.

3. Geometry

Without extended defects such as dislocations every crystalline material would be
infinitely brittle at all temperatures, up to their melting point. The theory of dislocations
describes the processes necessary on the atomic scale for microscopic (e.g. misfit disloca-
tions) and macroscopic (e.g. shear, dilatation as seen in figure 17) displacements from the
perfect crystal structure. In this work we will concentrate on edge dislocations in diamond
cubic materials (see [90] for a more extensive treatment of this subject).

Figure 17. Operations producing pure edge dislocations a) perfect crystal cube b) shear:
the horizontal lattice constant of the top part of the crystal due to shear stress differs from
the one on the bottom. Misfit dislocations account for the displacement on the atomic
level. c) dilatation: edge dislocations moving through the perfect crystal structure account
for material shift in ductile processes.

F. Frank [107] suggested a simple procedure to define the dislocation displacement,
the Burgers vector ~b as seen in figure 18. If the direction of the dislocation, which is
not always unambiguously definable, is into the plane of the paper, the Burgers vector is
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defined as the vector closing the (clockwise) Burgers circuit, which is a rectangle of an
integer number of unit cells wide and high around the dislocation core. Figure 18 shows a
60◦ dislocation in Si running along [1̄1̄0]. The Burgers vector ~b = a

2 [101̄] subtends an angle
of 60◦ with the dislocation line.

Figure 18. Burgers circuit in diamond cubic structure containing a dislocation running into
the plane of the paper as indicated by the round (blue) arrow. The length and direction of
the Burgers vector is the difference between the points S and F. The inset shows a portion
of the top plane, showing that the Burgers vector b = a

2 [101̄] is not in the plane of the
paper, but at a 60◦ angle with respect to the dislocation line.

In face centered cubic (fcc) crystal structures the Burgers vector has the form a
2 〈110〉

and the dislocation lines are along 〈011〉 directions. This puts the glide planes, which are
normal to both, the Burgers vector and the dislocation line, in {111} planes. Since the
diamond cubic, as well as the sphalerite crystal structure, consist of two fcc sub-lattices,
displaced by the vector a(1

4
1
4

1
4) from each other, we also have two possible types of {111}

planes, i.e. shuffle- and glide-plane, as shown in figure 19.
It was originally thought [86] and for a long time accepted that dislocations in

diamond cubic structures belong to the shuffle set. Although Shockley already showed
in 1953 [108] that only glide-set dislocations in diamond cubic structures can dissociate
into (Shockley) partials, as in fcc metals, it took until in 1971 when Ray and Cockayne
[97] showed, that 60◦ edge dislocations in Silicon dissociate into (Shockley) partials by
direct observation of dissociated dislocations using the newly established TEM weak-beam



41

Figure 19. Projection of the diamond structure onto a (110) plane, showing glide- and
shuffle-plane. dg and ds indicate the interplanar distances for the glide- and shuffle mecha-
nisms.

technique, for Shockley’s proposal that dislocations in the diamond-cubic structure are of
the glide-set, to find wide acceptance.

60◦ dislocations dissociate into two Shockley partial dislocations, one with a Burgers
vector of 90◦ to the dislocation line, and another with a 30◦ angle, preserving the total
Burgers vector and producing a stacking fault between them. For a dislocation running
along [1̄1̄0] in the (11̄1) plane we get

~b60◦ → ~b30◦ + ~b90◦
a

2
[101̄] → a

6
[211̄] +

a

6
[11̄2̄] (3.1)

As a perfect 60◦ dislocation dissociates it produces a fault in the diamond cubic
stacking sequence in the area between the two partial dislocations. Figure 21 shows the
stacking sequence of the (111) layers to be A-a-B-b-C-c. Since the Burgers vectors of the
partials are equal to the horizontal displacement vectors between the three different layers
(e.g. rB = rA + 1

3 [11̄1] + 1
6 [11̄2̄] = rA + 1

3 [11̄1] +~b90◦ in the coordinate system of figures 21
and 18) the stacking fault looks like a missing double layer. A possible stacking sequence for
such an intrinsic stacking fault could for example be: . . .A-a-B-b-C-c-A-a-B-b-A-a-B-b-C-c
. . . , which can be obtained by removing a C-c double-layer from the perfect (unfaulted)
stacking sequence.

4. Dislocation Dynamics in Silicon

4.1. Energy Minimization by Dissociation. The equation for the force between
any two parallel dislocations was first developed by Nabarro [109]. The radial component
of the interaction force per unit length between the two partials with a distance R between
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Figure 20. (color) Dissociated 60◦ glide-set dislocation. A stacking fault (SF) ribbon (plane
of gray and white atoms) is bound by the two partials. The cores (green) of the 30◦ and
the 90◦ partial are reconstructed. The extra half plane at the 90◦ partial is indicated by
the blue atoms.

Figure 21. (color) Stacking sequence of the (111) planes in an unfaulted Si crystal.
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them is
FR =

µ

2πR

(
~b1 · ~ξ

) (
~b2 · ~ξ

)
+

µ

2π(1− ν)R

[(
~b1 × ~ξ

)
·
(
~b2 × ~ξ

)]
(3.2)

where ~b1 and ~b2 are the Burgers vectors of the two partials, ~ξ the direction of the dislocation
line, ν the Poisson ratio, and µ the shear modulus. For Silicon µ = 6.81 × 104MPa and
ν = 0.218 and the force between the two partials is repulsive, which means that they
will separate from each other until the repulsive force is balanced by the attractive force
produced by the increasing stacking fault energy. Since one of the partials has a Burgers
vector perpendicular to the dislocation line, the first term in equation (3.2) vanishes, so
that per unit length of the dislocation line the force between the two partials is

F
(partials)
R =

aµ

24π(1− ν)R
(3.3)

The energy for the faulted area between the partials is composed of three kinds of terms: an
energy associated with the bonds across the fault plane which are sheared by the fault, an
energy term caused by the dilatation normal to the closed packed layers, and a term arising
from dilatation within a close-packed layer near the fault plane [90]. The computation of
the stacking fault energy is rather complicated, but it can be determined experimentally
by measuring the equilibrium distance of the partial dislocations, which is of the order of
Requilib ≈ 50 . . . 100Å in Si. The force due to the stacking fault energy must counter-balance
the the force due to the separation of the partials in equation (3.3) at R = Requilib.

F
(sf)
R = −F

(partials)
R (Requilib) = − aµ

24π(1− ν)Requilib
(3.4)

4.2. The Peierls-Nabarro Dislocation Model and Dislocation Kinks. Equa-
tion (3.2) is based on a continuum theory, which does not take into consideration the periodic
nature of the crystal lattice. However in a periodic lattice the moving of dislocation lines
is associated with the breaking and forming of atomic bonds, and small displacements of
atoms from their lattice positions. Figure 22 shows the self-energy of a dislocation in the
diamond cubic structure as it moves from one low-energy position to the next, having to
break atomic bonds (A→B) and form new ones (B→C) on the way. This produces a periodic
potential ”landscape”, known as Peierls potential, first described by Peierls in 1940 [110]
and later refined by Nabarro [111], which affects the movement of dislocations in a lattice.

The energy of a kink-pair can be broken down into the self energy Wf of a single
kink and the interaction energy Wint between the two kinks in the pair [90]

W = 2Wf + Wint (3.5)

For a pure edge dislocation

Wf =
µb2h

4π

[
ln

(
h

eρ

)
− 1

(1− ν)

]
(3.6)

Wint = −µb2h2

8πx

1− 2ν

1− ν
(3.7)
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Figure 22. Approximate self-energy of a system of two semi-infinite crystals of the diamond
cubic structure with dis-registry ~b/2 in the [11̄1]-plane, where ~b = a

2 [101̄] is the Burgers vec-
tor for a 60◦ dislocation. The energy (Peierls potential) as a function of dislocation position
x is sinusoidal with the periodicity of the lattice and is due to small atomic displacements
(not shown in the figures) and the breaking of atomic bonds (as shown in B).
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Figure 23. Segments (A-D) of a dislocation that lie in different parallel ”valleys” (solid lines)
of the periodic Peierls potential are connected by kinks, which traverse the Peierls potential
”hills”. The period of the potential is h = |~b|sin(α), where ~b is the Burgers vector and α
the angle it subtends with the direction of the dislocation line (h=3.3Åin Si). Successive
kinks of opposite sign causing only a ”temporary” shift of the dislocation line are called a
”kink pair” of width x. w is the width of a single kink.
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where b is the magnitude of the Burgers vector, h the height of the kinks, which is equal to
the separation of the Peierls ”valleys”, e is Euler’s number, and ρ is the smallest distance
between the dislocation segments at which they still interact, according to the model. This
cutoff-parameter ρ is a phenomenological parameter introduced to avoid the divergence of
the dislocation interaction energy at very small distances by setting the interaction energy
to zero for dislocations separated by less than ρ. For a kink of height h = bsin(α) (α =
angle between dislocation line and Burgers vector) h/ρ is of the order of 1, and the estimate
of Wf of the same order as the uncertainty associated with the effects that determine the
value of ρ, i.e. corner-effects, detailed atomic kink-configurations.

4.3. Kink Concentration and Mobility. Among the attempts to explain dislo-
cation motion in undoped material are the kink-diffusion model, developed by Hirth and
Lothe [90], the ”weak-obstacle” theory of Celli, Kabler, Ninomiya, and Thomson [112], and
a modification thereof proposed by Möller [113]. The latter theory accounts for dissociation
of dislocations into partials, whereas the first two theories mentioned consider complete
dislocations [114]. Because of its applicability to the work discussed in chapter 4 some of
the details of the kink-diffusion model will be given.

A dislocation whose endpoints are fixed by either jogs, obstacles, or because it pen-
etrates the crystal surface has to have a certain net amount of geometrical kinks if its
endpoints lie in different valleys of the Peierls potential. In figure 23, for example, a net-
amount of one positive kink is required. In addition to geometrical kinks there exists a
thermal equilibrium of double-kinks, which account for the free energy of the system. The
Helmholtz free energy of a pair of these thermal kinks (2FK) is given by

2FK = 2UK − 2TSk (3.8)

where UK and SK are the internal energy and entropy of a single kink and T is the tem-
perature. Since the entropy is very small compared to UK , it is most of the time neglected.
In a stress-free environment 2UK = W = 2Wf + Wint (equation (3.5)), but more generally
the energy for the constrained equilibrium is (according to Seger and Schiller [115])

F (x) = 2FK − µb2h2

8πx
− τbhx (3.9)

where the third term is the stress correction for an applied stress of FS = τbh on a kink of
height h with a glide-plane component of τ [115]. This means that according to classical
statistical mechanics the equilibrium concentration of thermal kink-pairs of a certain kink-
kink separation x at a certain temperature T is given by

c(x) =
1
a2

exp
(
−F (x)

kBT

)
(3.10)

where a is now the spacing between possible kink sites, i.e. the periodicity of the second
order Peierls potential along the dislocation line.
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5. Partial Dislocation Core Reconstruction

Generally, dislocations in semiconductors act as electrically active defects for a num-
ber of possible reasons (deep states along the dislocation core due to dangling bonds, im-
purities, point defects, etc.). I will first give an overview of the experimental techniques
available to give some insight into this matter and then discuss some of the recent theoret-
ical results concerning the reconstruction of partial dislocation cores in Si. In chapter 5 a
new diffraction technique for the direct observation of periodicities in the dislocation core
reconstruction will be discussed.

5.1. Observation of Electronic Properties of Dislocations. Electronic prop-
erties of materials, in particular at low temperatures, are defined by their band structure
in the vicinity of the Fermi-level. For metals the Fermi-level is within the conduction band,
which allows charge carriers to travel freely without the need of thermal excitation into
a conducting state. Semiconductors on the other hand are defined by the existence of a
band-gap, a band of inaccessible states between the fully filled (in the low temperature
limit) valence band and the empty conduction band, and the Fermi-level between the two.

Since the band structure depends on the atomic structure and charge-distribution
(its Fourier transform) one expects it to be different in the vicinity of defects, like dislo-
cations. If extended defects such as dislocations introduce charge carrier states within the
band-gap then these states could be accessed easier by electrons in the valence band or
holes in the conduction band and turn dislocations into 1-dimensional wires. The matter
of reconstruction of dislocation cores is therefore very important, because it is generally
believed that unreconstructed ”dangling” bonds produce deep levels within the band-gap.
But even if the cores are reconstructed (i.e. all valence electrons of every atom along the
core are involved in covalent bonds) there may still exist shallow states within the gap,
locally altering the electronic characteristics of the material.

• Hall Effect Measurements: From Hall effect measurements the carrier density as a
function of temperature n(T ), p(T ) can be determined. Comparing crystals before and
after deformation the change of carrier density can be measured and, if the dislocation
density is known, an average occupation ratio f of carriers along the dislocation core
can be estimated, as long as we neglect the contribution of point defects and impurities
introduced by the deformation. Two possible models for the charge distribution along
dislocation cores were proposed by Read [116] (single, localized acceptor levels in the
band-gap) and Schröter and Labusch [117] (a one-dimensional band of states, which
is neutral, when half filled, and can therefore accept as well as give up electrons).
Hall measurements [118] have strongly been in favor of the latter model [114, 118].
However Ono and Sumino [119, 120], (as well as Kisielowski and Alexander using
EPR spectroscopy) came to the conclusion that at least in Silicon the consequences
of plastic deformation for the electrical properties are mainly due to point defects not
located along dislocation lines.
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It must be noted that neither one of the models [116, 117] accounts for dissociated
dislocations and the stacking fault between them, which can possibly also carry states
in the gap [114]. This is especially important, since theoretical calculations show that
partial dislocations are most likely to be reconstructed, forming covalent bonds with-
out deep states in the band-gap. It is therefore important to perform more localized
experiments on single (partial) dislocations.

• Electron Paramagnetic Resonance (EPR) Spectroscopy:

Assuming that unreconstructed dangling bonds along dislocation cores are paramag-
netic centers, i.e. they have a non-zero net-electronic spin, EPR spectroscopy can
reveal them, and with proper calibration also give the number of defects in the speci-
men. The structure of the spectrum can even give information about the symmetry of
the defects and the chemical species of atoms involved. Despite two decades of experi-
mental work applying EPR to deformed Si (see [114] for a review) the debate over the
interpretation of the results is still not settled. Ossypian et al [121] propose a magnetic
phase transition between defects that a) are and b) are not related to the dislocation
anisotropy at about 60K, while Alexander and Kisielowski-Kemmerich [122,123] pro-
pose the coexistence of both types of defects, because the spectra of both types can
be detected at any temperature. Pohoryles [124] gives an alternative explanation of
the EPR spectra based on photoluminescence data of deformed Si and Ge in a high
pressure He environment concluding that dislocation cores are unreconstructed.

• Deep Level Transient Spectroscopy (DLTS):

Using Shottkey diodes deposited on the crystal surface one can measure the voltage-
and frequency-dependent capacitance of bulk-and defect structures within the deple-
tion region of the diode. DLTS has become the most effective technique to establish
the density and position of deep levels in the gap. In application to dislocations in
Silicon this technique has been able to identify three [125], or at least one [114] peak
in the DLTS spectrum with deep levels along the dislocation. Similar to EPR this
method is also unable to investigate single point- or extended defects, but has to fit
the sum of responses of all defects in the region investigated to some kind of model.

• Electron Beam Induced Current (EBIC):

This technique employs a scanning electron microscope (SEM) beam on a sample with
a thin electron-transparent Schottky contact (usually evaporated Al) on top of it. The
Schottky contact is reverse biased. An image at the typical SEM resolution is formed
by displaying the amplified leakage current as a function of (2-dimensional) electron
beam position. The electron beam induced (minority) carriers either recombine at
defects or are collected at the Schottky contact thus carrying information about the
effective minority carrier life time, which will be reduced by electrically active defects.
Higgs et al. [126] and Wilshaw [127] were able to ascribe EBIC contrast (as well as
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PL contrast [128]) to contamination by metal (Cu, Fe, Ni) atoms during the defor-
mation process by comparing measurements of Si samples deformed under ultra-pure
conditions before and after contamination by back-plating with Cu, Fe, and Ni, even
for contamination levels too low to be detected as precipitates at the dislocation core
by TEM (below 1 monolayer of metal deposition on the surface). These results and
others raise the question, whether clean dislocations are electrically active at all.

• Photoluminescence (PL):

In 1976 Drozdov et al. [129] were able to attribute 4 PL lines (D1 . . . D4) to the pres-
ence of dislocations in silicon. Since then the D1 and D2 bands have been attributed
to intrinsic properties of dislocations, such as electronic transitions at stacking faults,
kinks, point defects trapped in the strain field, whereas the D3 and D4 bands are
considered to be associated with electronic transitions at the dislocation core [130].
This method usually samples volumes of hundreds of µm3 at a time, but recently a
high resolution PL technique for Si and SiGe structures (SiPHER [131,132]) has been
developed capable of a resolution of 1 µm. PL clearly proves the existence of shallow
states near or in the dislocation [114].

• Microwave Conductivity (MWC):

Brohl and Alexander [133, 134] have shown that microwave conductivity (MWC) at
9GHz dominates by several orders of magnitude in the direction of dislocations at low
temperatures (20K). Brohl [134] ascribes this result to band conductivity in shallow
bands near the edges of the valence and conduction bands.

• Electric Dipole Spin Resonance (EDSR):

Electrically induced spin-flip of electrons moving in a shallow band split from one of
the conduction band edge minima by the dislocation strain-field can be observed [114]
by this technique first discovered as a possible application for the study of dislocations
in semiconductors by Kveder [135,136].

• Electron Energy Loss Spectroscopy (EELS):

Using a high energy (100kV) electron beam with 0.3eV energy spread focused to a
spot size of 0.2nm and an EELS spectrometer with 160meV resolution Batson [102]
has recently shown spatially resolved EELS measurements with numerically enhanced
0.25eV energy resolution of a dissociated 60◦ dislocation in a SixGe1−x-alloy. Fitting
linear combinations of calculated spectra of possible local atomic environments he was
able to decide in favor of a modified version of the double period structure for the 90◦

partial dislocation [137]. However, he also notes that while his model structures were
periodic along the core there would be very many other possible structures involving
kinks explaining his results.

As this list shows there exists a variety of experimental techniques to probe the
electronic properties of defects in semiconductors. But all of them are indirect methods,
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relying on the interpretation of their data according to some model. As shown by Higgs et al.
[126,128] and Wilshaw [127] it is possible that most or even all of the ”observed” electronic
activity of dislocations in semiconductors is simply due to impurities in the specimen, which
has not been taken into account by the models used for the interpretation of experimental
data. The availability of direct measurement of dislocation core properties is therefore of
great importance.

5.2. Total Energy Calculations. All physical properties of materials are related
to the total energy or differences between total energies of the system of electrons and nuclei
[138]. Total energy calculations have been successfully used to predict lattice constants, bulk
moduli, phonons, piezoelectric constants, phase transition pressures and temperatures, etc.
(for a review see [139–141]). Despite the extremely rapid development and availability of
fast computers most ab-initio methods for solving the Schroedinger equation for a multi-
body system of atoms can currently only handle up to about 100 atoms. However, because
of the long-range deformation of the crystal structure, surrounding defects, total energy
calculations of systems containing defects require a very large number of atoms.

Because of the large difference in mass between the electrons and nuclei, and the fact
that due to the equal charge of electrons and protons the forces acting on those particles are
the same, the electrons respond essentially instantaneously to the motion of the nuclei, lead-
ing to a separation of electronic and nuclear coordinates in the many body wave-function,
the so-called Born-Oppenheimer approximation. This reduces the many-body problem to
one, in which the electrons move in the Coulomb potential created by the ”frozen” configura-
tion of nuclei. Parameterizing the electronic wave functions subject to the true ion-electron
interaction potential using plane waves (Bloch’s theorem, eqn. (2.7)) requires a rather large
basis set of plane waves. Due to the fact that most physical properties of a material mainly
depend on its valence electrons, the strong ion-electron interaction potential can be replaced
by a much weaker pseudo-potential, which approximates the ion potential screened by the
core electrons, as ”seen” by the valence electrons [142, 143]. The following list mentions
some of the pseudo-potential methods used most frequently:

• Stillinger Weber Potential (SW): Developed by Stillinger and Weber [144] this poten-
tial consists of two- and three-body interaction terms fitted to experimental properties
of the diamond-cubic and molten form of silicon. It has been used for the study of
lattice dynamics [145], point defects [146, 147], surfaces [148], and the liquid and
amorphous phases. [144,149–152]

• Tersoff Potential: Developed by Tersoff (3 versions: T1 [153], T2 [154], and T3 [155])
this potential consists of many-body interactions included in a bond order term and
was fitted to ab initio results for several Si polytypes. It has been used to study lattice
dynamics [145], thermo-mechanical properties [156], point defects [153, 154] and the
liquid and amorphous phases [152,154,157].
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• Environment Dependent Inter-atomic Potential (EDIP): In trying to overcome some
of the drawbacks of the SW- and Tersoff-potentials, like their lack of transferability
to a wide variety of structures, especially those far from equilibrium, Justo, Bazant,
Kaxiras, Bulatov, and Yip [158] introduced a new empirical potential for silicon using
a theoretically motivated functional form which emphasizes chemical and physical
trends, using only a fairly small number (13) of parameters. This potential represents
a considerable improvement over existing models in describing local structures and
extended defects [158]. It provides a good description of point defects in the bulk,
the exchange path for self-diffusion, and elastic properties of bulk silicon. Its ability
to predict core structures of partial dislocations in the glide set (111) in excellent
agreement with ab initio results were one of the main reasons for its application in
this work.

The calculations of structural models used in chapter 5 as well as for figures 18
and 20 in this chapter were done by João Francisco Justo Filho at the Instituto de Fisica
da Universidade de São Paulo, Brazil using the EDIP method developed by him and co-
workers [158]. João Justo’s description of how he did the calculation have been included in
appendix C.

5.3. Periodicity of the Partial Dislocation Cores in Silicon. Experimental
results and theoretical calculations, as mentioned above all agree on the fact that partial
dislocations in silicon are reconstructed. In fact theory predicts only a single energetically
favorable structural model for the core of the 30◦ partial (shown in figure 24), which has a
periodicity twice that of the lattice along the direction of the core.

For the 90◦ partial however two possible core structure models exist, both breaking
the symmetry along the direction of the core, and therefore producing at least two energet-
ically identical solutions. The first, proposed independently by Hirsch [159] and Jones [160]
in 1979, has the same periodicity along the core as the perfect crystal structure and is
called the single period (SP) model. The second one proposed by Bennetto et al. [137]
has a periodicity twice as long along the core and is called the double period (DP) model.
The difference in total energy ESP − EDP between the two models at 0K has been calcu-
lated by different authors to be somewhere between -0.021eV and 0.079eV [137, 161, 162],
depending on the model and numerical method used. This difference in energy is compa-
rable to kBT = 0.025eV at room temperature and it may therefore be possible that both
reconstructions are present at high enough temperatures.
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Figure 24. (11̄1) projection of the layer of atoms in the stacking fault plane of the dissociated
60◦ dislocation. Dark blue atoms are below and orange atoms above the stacking fault plane.
Regions of period doubling are shaded in light green. Note that the 90◦ partial of the model
on top (90◦ SP) has no period doubling along its core at all, the narrow shaded area only
marks its location.



CHAPTER 4

IMAGING OF PARTIAL DISLOCATION KINKS

1. Introduction

It has been shown in chapter 3 that we can determine the kink formation energy FK

from a measurement of the concentration of kinks along partial dislocations. Several groups
have already obtained experimental results (Kolar, Spence, and Alexander [1, 98] using
forbidden reflections lattice imaging [FRLI] [98, 163] and Suzuki and Maeda et al [99, 100]
using a Fourier filtering technique [101]), but their quality has generally not been good
enough for an unambiguous determination of kink positions. In this chapter I will give one
of the the reasons for the insufficient quality of the experimental results given in [1,98] and
discuss ways to improve them along with some experimental results.

Parts of the work described in this chapter have been presented at the ”Extended
Defects in Semiconductors 2000” conference in Brighton, UK in Juli 2000. The proceedings
of this conference are contained in a special issue of ”Journal of Physics: Condensed Matter
12”, where our paper can be found on page 10175 [164].

2. Forbidden Reflections Lattice Imaging FRLI

In 1974 Cherns [163] published astonishing dark-field micrographs of a 400 Å thin
Au film showing surface steps of atomic height by using one of the weak, kinematically
forbidden 1

3 [422] reflections. Forbidden reflections are vectors in reciprocal space for which
the structure factor of the full unit cell is zero, but may be non-zero for one or several slices
with a surface normal parallel to the incident electron beam taken from the unit cell.

Figure 25a shows the unit cell of the zinc-blende structure in its commonly used
cubic representation. If the crystal is oriented with the electron beam normal to one of
the {111} surfaces, then it is more convenient to work with hexagonal coordinates. The
transformation of lattice vectors

~a′x =
1
2
~ax − 1

2
~by

~b′y =
1
2
~ax − 1

2
~cz

~c′z = ~ax +~by + ~cz
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Figure 25. Model of the zinc-blende structure with fractional atomic coordinates (diamond
cubic if all are the same type of atom). a) Orthogonal unit cell: The two fcc sub-lattices
are emphasized. b) Hexagonal unit cell

produces a hexagonal unit cell, as shown in figure 25b, with a unit cell volume of

Ω′ = ~a′x · [~b′y × ~c′z] =
3
4
Ω

where Ω = ~ax · [~by × ~cz] is the volume of the cubic unit cell. The reciprocal lattice for the
hexagonal unit cell relates to that of the cubic cell in the following way:

~g′x =
1
Ω′

~b′y × ~c′z =
1
3

(2~gx − 4~gy + 2~gz)

~g′y =
1
Ω′

~c′z × ~a′x =
1
3

(−4~gx + 2~gy + 2~gz)

~g′z =
1
Ω′

~a′x × ~b′y =
1
3

(~gx + ~gy + ~gz)

Using the hexagonal unit cell and denoting the 2 atom types in the zinc-blende
structure by the letters A and B the structure factor for any reflection ~g′ = h′~g′x+k′~g′y+l′~g′z
is computed by the following formula

fh′,k′,l′ =
6∑

j=1

fe
j (θh′,k′,l′) exp

(
2πi

[
h′x′j + k′y′j + l′z′j

])

=
[
fA(θh′,k′,l′) + fB(θh′,k′,l′) exp

(
2πil′

4

)]

[
1 + exp

(
2πi

3
(h′ + k′ + l′)

)
+

(
4πi

3
(h′ + k′ + l′)

)]
(4.1)

= 0, if h′ + k′ + l′ = 3m± 1 (4.2)
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where sin(θh′,k′,l′) = λ|~g′h′,k′,l′ | is the scattering angle associated with the reciprocal lattice
vector defined by (h′, k′, l′), x′j , y′j , and z′j are the atomic positions in the in fractional
coordinates in terms of the hexagonal unit cell lattice vectors, and m is an integer.

The structure factor for any reflection (h′, k′, l′) that satisfies (4.2) vanishes, if we
sum over the atoms of the full unit cell, but each term in the sum, which corresponds to
the structure factor for a single double layer (as defined in figure 27), by itself is non-zero.
This means that the total (kinematic) structure factors of these forbidden reflections are
only zero for a crystal with 3n (n = 0, 1, . . .) such layers, but finite for crystals with 3n + 1,
or 3n + 2 layers, or a fault somewhere in the stacking sequence of the layers.

Figure 26. (color) Diagram in reciprocal space showing forbidden reflection. a) 3-
dimensional plot of the points in reciprocal space. The 〈111̄〉 reflections are not in the
zero-order Laue plane but above and below it. The vertical lines extending from the 〈111̄〉
rec. lattice points show the excitation errors. Since the Ewald sphere has a finite curvature
the excitation errors for the points below the zero order Laue plane (green hexagon) are
slightly bigger than the ones for spots above it. b) 2-dimensional projection onto the [111]
plane of a). The 〈111̄〉 reflections appear at 1

3〈42̄2̄〉 in projection. All reciprocal lattice vec-
tors are given in the cubic notation. The arrows in b) define an orthogonal 2-dimensional
set of reciprocal lattice vectors (qx, qy) used later in the text.

The shortest g-vectors in the [001] zone axis satisfying condition (4.2) are [010],
[01̄0], [100], [1̄00], [110], and [1̄1̄0], which corresponds to [4̄22]/3, [42̄2̄]/3, [24̄2]/3, [2̄42̄]/3,
[2̄2̄4]/3, and [224̄]/3 respectively in the cubic notation. Figure 26 shows that the presence
of these 〈42̄2̄〉/3 reflections can also be explained by the existence of 〈111̄〉-type reciprocal
lattice points just above and below the zero order Laue plane. The excitation error of these
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reciprocal lattice points is

sg =
1√
3a

, (4.3)

assuming a perfectly flat Ewald sphere, which is a reasonably valid approximation for such
short g-vectors, at least to first order. The finite radius of the Ewald sphere requires a
second order correction of

∆sg =
1
λ

[
1− cos

(
atan

(
λ

∣∣∣~g 1
3
〈4̄22〉

∣∣∣
))]

≈ λ
∣∣∣~g 1

3
〈4̄22〉

∣∣∣
2

=
8λ

3a2
(4.4)

for sg, which must be added/subtracted, depending whether the reciprocal lattice point
is below or above the zero order Laue zone. This slightly different excitation error will
split the forbidden reflections into 2 groups of 3, i.e. diffraction amplitude and phase will
be equal for only 3 of the forbidden reflections in the zone axis case. Figure 26a shows
the 3-dimensional reciprocal lattice indicating the 〈111̄〉 points and the direction of their
excitation errors. Figure 26b shows how these reciprocal lattice points appear as 1

3〈42̄2̄〉
in the 2-dimensional projection. An experimental diffraction pattern of β-Silicon Carbide
with forbidden reflections is shown in figure 41.

Figure 27 shows a dynamical calculation of the amplitude of the 1
3 [42̄2̄] forbidden

reflection as a function of thickness. It can be noticed that the scattering amplitude for
an integer multiple of whole unit cells is close to zero before we reach the stacking fault,
but finite in between. The stacking fault then offsets the scattering amplitude by its value
at the fault, and it does not vanish anymore. If we use the forbidden reflections to form
an image (either by dark-field with a small objective aperture around one of the spots, or
bright-field where we choose the aperture big enough for the first-order forbidden but not
the bulk reflections to pass through), we will be able to see atomic height surface steps and
stacking faults. Also after the electrons have passed through the stacking fault, the peak
value of the scattering amplitude is about twice that of the perfect crystal, which enables
us to distinguish stacking fault contrast from pure surface step contrast.

The d-spacing for the 1
3〈422〉 reflections is

d〈4,2,2〉/3 =
a√

h2 + k2 + l2
= 3.31Å (4.5)

where a = 5.4Åis the lattice constant for Silicon. This means that a bright-field image with
an objective aperture just big enough to let the 1

3〈422〉 reflections pass would give us an
image with about 3.3Åresolution. Since we can identify the boundary of the stacking fault
with the partial dislocations, we are able to image the course of the partials and locate
kinks along it with high resolution.

3. HRTEM and STEM Image Simulations

In order to interpret experimental partial dislocation kink images and find ways to
increase their quality, a number of multislice calculations were performed using the program
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Figure 27. (color) Pendellösung plot of 1
3 [42̄2̄] forbidden reflection. The amplitude is plotted

as a function of thickness recorded at each one of the layers, as defined on top left. The
sequence of double layers is shown on the top right (thickness increases in direction of arrow,
i.e. the direction of the electron beam).
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’mulslice’ [35], assuming a 200kV TEM. Temperature effects were accounted for by applying
a Debye-Waller factor of 0.44Å2 for Si. All multislice calculations were done using 1024 x
1024 beams.

Figures 28 and 29 show a horizontal slice through the models used for the image
simulation for a dipole of two 30◦ partials and two 90◦ partials respectively. The atomic
coordinates for the different core reconstruction and kink models were taken from tight-
binding-total-energy calculations performed by Nunes et al [165]. A variety of point defects,
such as different proposed structures of kinks, direction switching defects, etc. have also
been included, in order to test whether the resolution of this imaging method is potentially
high enough to resolve differences between certain kink structures. The super-cells can
be repeated periodically, which avoids artifacts in the Fourier transform based multislice
algorithm due to abrupt changes in the atomic structure along the boundaries. In order to
make the simulations as realistic as possible, a thickness of 92Å to 100Å was chosen.

Figure 28. (color) Structural model of the atomic layer in the stacking fault plane of a dipole
of two 30◦ partials. A variety of defects [165] is also represented: PSD = phase switching
defect, LK, LK’ = different left kinks, RK, RK’ = different right kinks

3.1. New application of spherical aberration corrected TEM. The devel-
opment of several ultra-high resolution schemes (see [166] for a summary of seven new ap-
proaches) including the use of aberration correctors, high voltage microscopes and through-
focus schemes, promise that a resolution of about one Angstrom will be routinely available
for HREM in the near future (site permitting). This raises the question of whether one
might be able to distinguish kink models from this type of image, viewed normal to the
dislocation line, using forbidden reflections. Earlier simulations for kink images at 0.3nm
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Figure 29. (color) Model of a 90◦ partials dipole similar to figure 28. LR/RL = kinks
switching direction of reconstruction, DSD = direction switching. defect, RR-complex =
LR(RL)+DSD, LL-complex = LR+DSD, DP = segment of double period reconstruction
(see also chapter 5)

resolution [167] were unable to do this. Since forbidden reflections in Si are very weak com-
pared to the bulk reflections, the only way to obtain high image contrast from the stacking
fault is to allow only the forbidden reflections to contribute to the image and block the bulk
reflections by an appropriate objective aperture. Recording images at a resolution compa-
rable, or even better than that needed for resolving the Si(220) lattice fringes would require
a ring aperture that blocks the bulk reflections, but lets higher order forbidden reflections
pass.

The first spherical aberration Cs corrected TEM has recently been demonstrated [47].
Being able to control Cs of the objective lens makes it possible for it to be used as a tunable
ring aperture as can be seen from equation (2.28) and figure 8. As already described in
section 3.5 of chapter 2 the exit face electron wave-function Ψ(~r) is convoluted with the
objective lens transfer function (equation (2.27)) giving the wave-function in the image
plane (ΨI).

ΨI(~r) = Ψ(~r)⊗ FT−1
[
e−iχ(~q)A(~q)

]
(4.6)

Using the weak phase object approximation for the exit face wave function

Ψ(~r) = exp(iφ(x)) ≈ 1 + iφ(x) + O
(
φ(x)2

)

the image intensity can be approximated as

I(~r) = |ΨI(~r)|2 =
∣∣∣FT−1 [Ψ(~q) exp(iχ(~q))A(~q)]

∣∣∣
2
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≈ FT−1 [δ(~q) + 2φ(~q) sin(χ(~q))A(~q)]

= 1 + 2FT [φ(~q) sin(χ(~q))A(~q)] (4.7)

where χ(~q) is given by expression (2.28) and A(q) is a top-hat function describing the objec-
tive aperture. Assuming that the non-cylindrically symmetric aberrations, like astigmatism,
have been corrected, the remainder of (2.28) is dominated by Cs and the defocus df .

χ(q) = πλdfq2 +
1
2
πλ3Csq

4 (4.8)

where q = |~q|.
According to equations (4.7) and (4.8) one can find a combination of Cs and df

analytically for any given λ which let the MTF sin(χ(q)) go to zero for the lowest bulk
material spatial frequency qB but negative for the first and second order forbidden reflections
at qF = qB/

√
3 and 2qF = 2qB/

√
3.

χ(qB) = 0 ⇒ df = −1
2
Csλ

2q2
B

sin(χ(qF )) = −1 ⇒ df =
1

πλq2
F

− 1
2
λ2q2

F Cs

⇒ Cs =
1

(q2
B − q2

F )πλ3q2
F

=
9a4

x

128πλ3
(4.9)

df = − q2
B

(q2
B − q2

F )πλq2
F

= − 9a2
x

16πλ
(4.10)

Figure 30b shows such a MTF (sin[χ(q)]) as the dash-dotted curve. Since (4.7)
is only valid for weak phase objects, but starts to break down for 10nm thick samples,
the parameters Cs and df have been optimized with respect to the ratio of IF /IB, the
ratio of intensities of the spatial frequency components qF and qB in the Fourier transform
of the image Ĩ(~q) = FT[I(~r)] = FT[|ΨI(~r)|2] for fully dynamical multislice calculations.
For a 200keV TEM the optimum parameters have been found to be Cs = 0.225mm and
df = −341Å, which result in the ratio IF /IB = 1.2 ∗ 104 (see figure 31). This means that
the contribution of the first and second order forbidden reflections is much stronger than
the contribution of the bulk reflections. The optimized values for Cs and df allow us to
record an image with an objective aperture about twice as large as the one used for the
conventional FRLI method [98]. While a fixed spherical aberration can produce similar
shapes of the MTF, being able to adjust Cs makes it possible to tune the maximum with
MTF (q) = 0 to almost any desired spatial frequency q.

It should be noted here that the increase in objective aperture size means an increase
in resolution by a factor of two, but only in certain crystallographic directions. Since the
stacking fault also produces bulk-like reflections, we will be filtering away some periodic
information from the stacking fault image as well as part of the diffuse scattering due to
non-periodic features like the stacking fault boundary. However, this method still means a
considerable increase in resolution in comparison with the conventional FRLI method, as
seen in figure 32.
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Figure 30. MTFs for a 200kV TEM a) MTF of a conventional TEM without aberration
correction, and b) a possible MTF of an CS-corrected TEM. The dash-dotted lines indicate
the radius of the aperture. The dashed curve shows the MTF with CS and according
to expressions (4.9) and (4.10). The solid curve shows the MTF for Cs = 0.225mm and
df = −341Å, the parameters giving optimum forbidden reflections image contrast.
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Figure 31. Fourier Transform of a simulated image at optimized imaging conditions of
a model without any stacking fault but an extra surface layer, which produces forbidden
reflections. Even though the pattern is displayed on a logarithmic scale, the bulk-reflections
are barely visible. The ratio of intensities of the Fourier Transform of the image IB/IF =
8×10−5 shows that hardly any bulk-crystal information is being transferred by the objective
lens under these imaging conditions. The stacking sequence for this model was 10(ABC)A
(97Å thick).
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Figure 32. Fourier filtered multislice simulation of 30◦ partial dislocation dipole model
using optimized image parameters E = 200kV, Cs = 0.225mm, and df = −341Å. Different
kink models (see diagram on bottom right) proposed by Nunes [165] can potentially be
distinguished.
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In order to eliminate any residual bulk contribution to the image the image of an
unfaulted crystal has been subtracted from the one containing the SF. This can also be
realized with experimental data by making sure that the exposure contains a region of
perfect crystal, which can then be subtracted from the region containing the SF. In addition
to this subtraction the images have also been Fourier filtered. The single steps of this image
manipulation are shown in figure 33 for the 30◦ partial dislocation dipole model.

Figure 33. Image processing steps. a) HREM image of 30◦ partial dislocation dipole and
the stacking fault in between with image of perfect lattice subtracted. b) HREM image
after Fourier filtering with a mask around only the forbidden reflections of first and second
order, as shown in the inset. The resolution of the image is now orientation-dependent.

Figure 34 shows the multislice simulation for the model of a Silicon crystal containing
a 90◦ partial dislocation dipole with the dislocations running along [1̄10], viewed along [111]
with the (111) SF in the middle of a 100Å thick slab. A TEM similar to the one used by
Haider et al [47] is assumed at 200keV. The resolution is limited to 0.15nm by an objective
aperture transmitting beams up to qλ = αmax = 17mrad. The inset in figure 34 shows the
spatial filtering of this image that has been applied in order to remove all the bulk allowed
reflections from the image. Only the spatial frequencies contained within the white circles
are present in the image. We see that the position of the kinks can be clearly identified to
within an accuracy of less than 0.3nm. This resolution improvement, combined with the
advantage of atomically flat surfaces (discussed in the next sub-section) will make accurate
measurements of the kink density possible, and will also allow the identification of obstacles
along the line. A measurement of the density of these would allow one to distinguish
between the Hirth and Lothe theory [90] of dislocation motion (as limited by kink formation



65

or migration energies) and the Celli and Thomson theory [112], in which obstacles provide
the rate-limiting step. Apart from the exact outline of the stacking fault, different kinds
of defects can be detected, such as direction switching defects along the SP reconstructed
90◦ partial and also whether we have SP or DP reconstruction. The simulations for the 30◦

partial (figure 32) even show some differences between different kink models proposed by
Nunes et al. [165].

Figure 34. High resolution image of the 90◦ partial dislocation dipole model (figure 29).
The image processing has been done in the same way as in figure 33b).

3.2. Effect of Surface Roughness on Image Contrast. Since the image pro-
duced by forbidden reflections is only due to a single double layer in in the plane of the
stacking fault, we must also expect the contribution of the two surfaces to be rather strong,
especially since forbidden reflections can be produced or annihilated by additional surface
layers. A rough surface consisting of incomplete layers of Si atoms will cancel the image
contrast in some regions and possibly enhance it in others.

Ourmazd, Anstis and Hirsch [168] thoroughly investigated the dark-field contrast
produced by forbidden reflections in regions of perfect and faulted silicon crystal. They came
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to the conclusion that contrast produced by additional surface layers and/or a stacking fault
can be equal. I therefore decided to simulate the rough crystal surface and perform a fully
dynamic simulation of the BF-TEM image in order to quantify effects of surface roughness.
The simulation of the rough surfaces was done according to a very simple algorithm:

1. Distribute a few atoms randomly over the atomically flat surface, but only in legitimate
lattice sites, as ”seeds” for additional atoms to gather around.

2. Add more atoms and let them perform a random walk, until they ”bond” to one or
two other atoms already on the surface

3. Add atoms in a second layer, in some of the places where they can form 3 bonds to
atoms below.

Figure 35. Simulated rough surface layer. The inset shows a cross-section in a place where
an atom could find 3 other atoms to bond to in order to create a second layer.

Figure 35 shows the simulated rough surface layer which has been added to the top
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of the model containing a 90◦ partial dislocation dipole. Performing the same multislice
calculation as for figures 34 and 32, but with a conventional TEM (without aberration
corrector), an image with a much fuzzier outline of the stacking fault is obtained. Figure 36
compares images computed from models with and without atomically smooth surfaces. It
can be seen very clearly that the rough surface does not totally destroy the stacking fault
contrast, but it has the effect of ”smearing” the otherwise sharp boundary of the stacking
fault, making it almost impossible to exactly locate and estimate the density of partial
dislocation kinks. This effect can be observed in the images recorded by Kolar [1, 98].

Having established the fact that atomically flat surfaces very much enhance the
visibility of partial dislocation kinks the question of the experimental implementation arises.
It is a well know fact that Si oxidizes very easily and it is therefore very complicated to
produce atomically flat surfaces on Si. In principle there exist only two possible approaches
to this problem:

1. Produce Si samples with atomically flat surfaces.

Figure 37 shows an experimental TEM micrograph taken under UHV conditions of a
Si sample with atomically flat surfaces (see section 4 for experimental details). Areas
of constant thickness form terrace like contrast, differing from sinusoidal Pendellösung
fringes observed for wedge shaped samples without atomically smooth surface steps.
In figure 38 the subsection of figure 37 outlined by the dashed rectangle has been
analyzed. In order to estimate the average intensity value of the terraces a Matlab
script has been written that enables one to outline each terrace with the mouse and fill
the polygon defined in this way with the color corresponding to the average intensity of
that particular terrace. The average intensities and lengths of terraces have then been
plotted as a function of horizontal distance. Since the overall thickness of the specimen
increases from the left to the right within this image the overall intensity changes due
to Pendellösung oscillation of the direct beam, as indicated by the broken lines in the
plot. The distribution of intensity levels apart from the central beam Pendellösung
oscillations will be discussed in section 4.2.

2. Use a different material with the zinc-blende crystal structure, but chemically much
more inert surfaces, enabling us to prepare atomically flat surfaces more easily.

Striking bright-field TEM images of the surfaces of ceramics have recently been ob-
tained by Suznitsky [169] and Ndbubuisi [170] using a high temperature anneal pro-
cess which results in atomically smooth terraced surfaces which are preserved at at-
mospheric pressure. β-SiC has almost the same structure (zinc-blende instead of
diamond-cubic) as Si and therefore the same needed forbidden reflections. Figure
39 shows a Pendellösung plot for the amplitude of the 1/3[4̄22] Bragg reflection as
a function of thickness in β-SiC for a [111] beam direction. This amplitude is zero
for slabs containing 3n double layers and also for the second order 2/3[4̄22] forbidden
reflection. A stacking fault has been included. The forbidden reflection in β-SiC oscil-
late with about twice the amplitude (hence four times the intensity) of the forbidden
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Figure 36. Simulated image of the 90◦ partial dislocation dipole (figure 29) model a) with
b) without rough surface layers. E = 200keV, Cs = 1.2mm, df = 600Å, α = 9.8mrad,
thickness of atomically flat model: 10 unit cells (92Å). Subtracted perfect crystal image
from both to enhance contrast. The simulation in a) shows very similar washing out of
details along the stacking fault boundary as the experimental ones [1, 98]
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reflections in Si and should therefore give even stronger image contrast. Samples of
β-SiC with atomically smooth surfaces have been prepared and experimental results
will be described in section 4.

Figure 37. BF image of atomically flat Si (111) near a hole produced by the etchand during
sample thinning. The aperture was chosen large enough to include the forbidden reflections.
Atomically flat terraces on bottom and top of the sample intersect in the projection and
produce areas of n, n+ 1

3 , and n+ 2
3 unit cells thickness causing the visible contrast. Recorded

by Dr. Frances Ross on 300kV UHV Hitachi TEM at the IBM T. Watson Research Center
in Yorktown Heights (unpublished).

3.3. STEM simulation. Figure 40a shows a simulated STEM image recorded on
a specially designed detector. The beam energy is 200kV, Cs = 1.8mm, df = −400Å,
temperature = 300K. The objective aperture used for this simulation produces a beam
divergence of 6.5mrad, for which the bulk diffraction disks almost touch each other and
causes a probe intensity distribution shown in figure 40b. Non-overlapping diffraction disks
cannot produce a lattice image in BF-STEM, and we therefore expect a constant, probe
position independent signal on the detector in the absence of forbidden reflections. However,
the presence of forbidden reflections, which appear at a diffraction angle of 7.6mrad, overlap
with the central beam and the 〈220〉 diffraction disks (see figure 40d), producing probe
position dependent interference fringes. The detector (shaded area in figure 40d) has been
chosen to collect most of the area of overlap between the forbidden and bulk reflections.
The center of the detector is cut out in order to avoid an unnecessary high offset signal
produced by the part of the central disk that does not overlap with the forbidden reflection
disks.
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Figure 38. Distribution of intensity levels (arb. units) and size of atomically flat terraces
as function of distance (in units of image pixels) in the region marked by the box in figure
37. The area from figure 37 used for this analysis is shown in the background of the plot.
Terraces of constant intensity level apart from statistical noise have been replaced with
”patches” of constant value showing the size and position of the terraces whose average
intensity and length is shown in the plot. See text for further details.
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Figure 39. Pendellösung plot of the amplitude of the 1
3 [4̄22] (solid) and 2

3 [4̄22] (dashed)
forbidden reflections for Si (left) and β-SiC (right). Notice that the amplitude for SiC is
about twice that for Si.

Figure 40c shows the structural model of the plane of the stacking fault between two
30◦ partial dislocations of opposite Burgers vectors as used for this simulation. This model
is a subsection of the one shown in figure 28. The abbreviations are explained in the caption
of figure 28. The white arrow in figure 40 points to a feature in the image that looks like
a kink pair of very small separation. Comparing that feature with the model in figure 40c
we see that it is produced by a phase switching defect (PSD). Nunes [165] gives 2 possible
versions of this kind of defect of which both are shown in figure 40. The PSD involving an
isolated atom in the core of the dislocation does not produce forbidden reflections because
this atom is only very slightly displaced from the position that it would take in the perfect
crystal structure. It is therefore important to simulate the effect of certain core structures
on the image in order to be able to interpret experimental images correctly.

Batson [171] has performed this experiment on a VG HB-501 dedicated STEM and
obtained results very similar to those described in [98], also with similar (insufficient) image
quality. However, I do not know the exact detector configuration used in this particular
experiment, because the results have not been published.

4. Experiments, Results and Discussion

Experiments pursuing both approaches mentioned in section 3.2 to obtain atomically
smooth surfaces have been performed. This section will describe experiments using β-SiC
as well as Si samples.
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Figure 40. STEM simulation of 30◦ partial dislocation dipole. a) Simulated STEM image.
The white lines are a guide for the eye. b) Plot of the intensity of the electron probe used
to form this image. c) Diagram of the atomic positions in the plane of the stacking fault
(see caption of figure 28 explanation of abbreviations). d) Diagram showing the shape of
the detector and its size relative to the diffraction pattern. The dashed circles represent the
forbidden reflection disks. See text for further explanation.
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4.1. Experiments with 3C-SiC. Samples of 0.75µm thick β-SiC (also called 3C-
SiC) film grown on the (111) surface of a 1mm thick Si wafer have been provided by C.
Zorman and M. Mehregany at Case Western Reserve University in Cleveland, OH. From
this wafer disks with a diameter of 3mm have been cut using an ultrasonic drill.

The disks have then been wedge-polished with a wedge-angle of 2◦. The final pol-
ishing step was done with a soft cloth and a chemo-mechanical polishing agent. Residual Si
from the bulk-substrate was then removed by selective etching using a 33% solution of KOH.
The need for further ion-beam milling was not given, because the samples were already very
thin. Wedge shaped samples were chosen over dimpled and ion-milled ones, because of the
much larger thin area available for electron microscopy, and also because SiC is a strong
enough material to produce such self-supporting thin films.

The wedge shaped samples have then been annealed at temperatures between 1000◦C
and 1300◦C in order to produce the atomically flat surface [169]. The sample has been placed
in a small crucible with a lid made from a rod of ultra-pure graphite. The crucible was then
placed into a heating coil made from Tungsten wire, which was installed in a small vacuum
chamber designed especially for this purpose. Heat was then generated by passing a high
current through the Tungsten wire holding the crucible. The temperature was monitored
through a window in the vacuum chamber using an infrared spectral analyzer. Great care
was taken to keep the pressure inside the vacuum chamber below 10−6 torr while heating
the sample. Degasing of the sample and crucible therefore required a very slow increase
in temperature. Figure 41 shows the diffraction pattern of a sample prepared in the way
described above (except for the indentation), containing forbidden reflections.

Figure 41. Selected area diffraction pattern of SiC (111) with strong forbidden reflections
a) pure pattern b) indexed pattern. The forbidden reflections are marked by circles and the
bulk reflections by squares. Notice that some of the forbidden reflections are as strong as
the [4̄22] bulk reflection. Recorded on LEO 912 at 120kV.
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Figure 42 shows a BF-TEM image recorded at 400kV using an aperture which was
big enough for the forbidden reflection to pass through. The sample has been annealed
at 1250◦C and a pressure of 7.5 × 10−7torr for about 12 hours using the vacuum chamber
described above. One can start to see steps in the contrast levels, especially in the upper
part of the image. However, the areas of constant contrast are still fairly small. Further
experiments are needed to perfect this method.

Figure 42. BF-TEM image of SiC (111) demonstrating partial success in creating atomically
flat surfaces. Recorded on JEOL4000 at 400kV and a magnification of 60000×.

Some of the unpolished 3mm disks of thin SiC(111) film grown on a Si(111) substrate
have been sent back to Case Western Reserve University where J. Chung (post-doc under
P. Pirouz) indented them at 800◦C and 1000◦C in air at a loading of 50g for 5sec using a
Vickers indenter apparatus [164]. Plastic deformation like that caused by indenting produces
dislocations in the crystal. These samples will be used in future experiments to image
dislocations and their dissociation into partial dislocations, and in particular kinks along
these partials.

4.2. Experiments with Si. In parallel to the experiments with β-SiC described
in the previous subsection experiments with Si have also been done. Si samples in which
dislocations had previously been introduced as described in [1, 98] have been prepared for
the sample holder of the 300kV Hitachi TEM, modified for ultra-high vacuum (UHV) ex-
periments, which required the samples to be 2 × 4mm and 100µm thick. The samples have
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first been cut to 2 × 4mm big rectangles and then parallel polished until the right thickness
was reached.

The samples were then laid on a glass slide and coated with bees wax, which covered
the whole sample and fixed it to the glass slide at the same time. While the wax was still soft,
a small amount of it was removed, exposing the center of the sample. The glass slides with
the samples glued to them were then held into a solution of Hydrofluoric Acid (HF), Nitric
Acid (HNO3), and Acetic Acid (CO3COOH) in the volume ratio (3:5:3) for approximately 5
minutes, until the exposed region of the sample became transparent red when shining light
through it. After rinsing the samples in deionized water they were exposed to a slower etch,
comprised of a (3:5:6) solution of Hydrofluoric Acid, Nitric Acid, and Acetic Acid for less
than a minute, until very small holes appeared. The samples were then rinsed in deionized
water again. The wax was removed using a bath of Trichloroethylene which was kept at a
high enough temperature for it to slowly boil. Residual wax was then removed using the
following procedure:

1. Rinse sample in deionized water

2. Bathe sample in Acetone

3. Rinse sample in deionized water

4. Bathe sample in Propanol

5. Rinse sample in deionized water

6. Dry sample

7. Bathe sample in a 1:10 solution of Nitric and Sulfuric Acid (H2SO4).

8. Rinse sample in deionized water

This method proved to be much faster than mechanical dimpling and ion-beam
milling, and it also produces very smooth surfaces. After rinsing the samples again in
deionized water the oxide layer was removed by a quick bath in a 5% HF solution.

Since the work of Chabal et al. [172], producing chemically inert Hydrogen termi-
nated Si surfaces by treatment with an aqueous solution of ammonium fluoride has become
a current topic in semiconductor physics and chemistry. In our experiments a hydrogen
terminated surface was created by the following the procedure proposed by Fukidome et
al. [173]:

1. Bathe sample in a 5% Hydroflouric acid solution for 5 minutes

2. Rinse sample in deionized water

3. Bathe sample in a 40% solution of Ammonium Flouride (NH4F) and deionized water,
to which 0.05 mol/l Ammonium Sulfite (NH4SO3) have been added, for 6 minutes.
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After this procedure the samples were visibly hydrophobic, indicating a successful hydrogen
termination. All glassware used in the sample preparation was cleaned using the Huang
cleaning procedure which consists of a bath in a solution of deionized water, Hydrogen
Peroxide, and Ammonium.

Figure 43. BF image of dislocations in Si(111). The sample has been oriented perpendicular
to its main slip plane. The dissociation of dislocations into partials can be seen very clearly.
The very weak contrast features concentric around the small area of vacuum at the top of
the image are Pendellösung fringes. This image has been recorded using the UHV Hitachi
300kV TEM on film at IBM Thomas Watson research center in Yorktown Heights.

Figure 43 shows a low magnification TEM image of a Si sample prepared in the way
described above. The dislocation density is high enough to find dislocations in material that
is thin enough for HRTEM imaging. However, the sample does not show terrace shaped
thickness fringes yet. The surface does not have large enough areas of constant thickness.
Different tests have been done to see how heating the sample to temperatures up to 1000
◦C will affect the dislocation density, especially in thin areas of the sample. This was done
because dislocations in Si become mobile at temperatures above 450◦C [1, 98] and might
relax and disappear from the thin areas of the specimen. Our experiments showed that
at least some of the dislocations were still present after O2-etching at 800◦C for several
minutes, which was done by slowly leaking oxygen into the TEM chamber while heating the
sample by passing a current of 350mA through the sample. This result indicates that it is
in principle possible to obtain atomically flat surfaces on these samples without removing
all the dislocations.
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While it was possible to obtain low-resolution images with apparently atomically
flat surfaces, a good quality image of the stacking fault boundary could not be recorded,
although resolution tests using a graphite test sample were able to prove that this instrument
was able to resolve 3.4Å lattice fringes.

Figures 37 and 44 show earlier results obtained by F. Ross using a similar sample
preparation method, but undeformed Si. These samples also have not been immersed in a
40% Ammonium Fluoride solution. Instead they have been heated to about 1000◦C in ultra-
high vacuum, which is known to produce very flat surfaces. One of the undeformed samples
examined by F. Ross contained a dislocation that had not been purposely introduced. Figure
44 shows part of the BF-TEM image which has been recorded at a magnification too low for
resolving single partial dislocation kinks. However this image very nicely demonstrates the
image contrast produced by forbidden reflections due to different surface terminations in
the presence of a stacking fault and in perfect material. Figure 45 plots the intensity level
for every numbered segment of the dislocation in figure 44. The image formation process
will now be discussed in more detail.

Figure 44. BF TEM image of dislocation running parallel to the Si (111) atomically flat
surface, enlarged from figure 37.

We will now consider the mechanism that produces the image contrast seen in figures
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Figure 45. Average image intensity of dislocation segments for every numbered segment in
figure 44.
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44 and 37. In section 2 of this chapter the origin of forbidden reflections has been discussed
for the general case of the zinc-blende structure. For the diamond cubic structure the 2
atoms A and B are the same, which means that fA(θ) = fB(θ). In the hexagonal notation
the third index l′ is zero for all six forbidden reflections. The sum h′ + k′ =-2, -1, 1, or 2.
Using the layer numbering scheme from figure 27, the structure factor for the 6 layers are:

Fh′,k′,l′(A) = Fh′,k′,l′(a) = f(θh′,k′,0) = f

Fh′,k′,l′(B) = Fh′,k′,l′(b) = f exp
(

2πi

3
[h′ + k′]

)

=





exp
(

2πi
3

)
for [h′, k′] = [01], [10], [1̄1̄]

exp
(
−2πi

3

)
for [h′, k′] = [01̄], [1̄0], [11]

Fh′,k′,l′(C) = Fh′,k′(c) = f exp
(

4πi

3
[h′ + k′]

)

=





exp
(
−2πi

3

)
for [h′, k′] = [01], [10], [1̄1̄]

exp
(

2πi
3
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for [h′, k′] = [01̄], [1̄0], [11]

There are two groups of 3 reflections which always have the same structure fac-
tor. The reflections [h′, k′] = [01], [10], [1̄1̄] correspond to the projection of [h, k, l] =
[1̄11], [11̄1], [111̄] respectively, which are those reciprocal lattice points above the zero-
order Laue plane. [h′, k′] = [01̄], [1̄0], [11] correspond to the projection of [h, k, l] =
[11̄1̄], [1̄11̄], [1̄1̄1], which are the points below the zero-order Laue plane (see figure 26 for a
graphical representation).

Assuming phase and amplitude of the forbidden reflections are exactly zero for a
crystal of an integer number of unit cells thickness, and the validity of the kinematic ap-
proximation, i.e. a central beam that is much stronger than any other beam (valid for thin
crystals, but see figure 46 for a calculation using fully dynamic scattering theory), one can
write down the image intensity for a crystal with an additional A layer, formed by using an
aperture that lets only the central beam and the forbidden reflections pass, as

IAa(~r) =
∣∣∣∣
∫

Ψ̃(~q) exp(2πi~q · ~r)d2~q

∣∣∣∣
2
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Using the 2-dimensional ~q-vector defined in figure 26 the position dependent phase factor
can be determined for both groups of forbidden reflections as
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(4.11)
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Figure 46. Pendellösung plot of the phase difference of the two types of forbidden reflections
with the central beam in an unfaulted Si crystal with the 200kV electron beam normal to
the (111) plane. The dashed line indicates the phase shift in addition to the kinematically
derived phase oscillations due to dynamic effects. The Multislice calculation has been done
using the HRTEM module of Cerius2.
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= Φ(1)(x, y)∗ (4.12)

where a is the lattice constant for Si. Φ(1)(x, y) and Φ(−1)(x, y) are the phase factor for
those reflections whose reciprocal lattice points are above and below the zero-order Laue
plane respectively, so that

IA(x, y) ∝
∣∣∣1 + f

[
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2
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2

= 1 + 24f2 + 16fRe
(
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)
(4.14)

The last term in expressions (4.13) and (4.14) oscillates around an average value of
0. The image shown in figure 44 is not taken at a high enough magnification to resolve
these oscillations, only the average intensity as determined by the first two terms in both
expressions can be seen. Ourmazd et al. [168] analyzed in great detail the contrast levels
of dark-field images of Si (111) produced by one of the forbidden reflections. Their result
indicates that the crystal can terminate with any of the 6 layers (A, a, B, b, C, or c).
Comparing the equations derived by Ourmazd with expressions (4.13) and (4.14) it becomes
obvious that the bright-field intensity is just

IBF = 1 + 6IDF (4.15)

where IBF is the bright-field intensity observed in this work and IDF is the dark-field
intensity reported by Ourmazd et al..

In general the amplitude of any of the forbidden reflections can be approximated
kinematically by simply adding the forbidden reflections structure factors for the given
stacking sequence. Figure 47 gives a graphic representation of such sums. Comparing
figures 47a and 47b, one can see that the kinematic forbidden reflection scattering amplitude
for a crystal containing a stacking fault can be twice as high, as the maximum scattering
amplitude for an unfaulted crystal. However, multiple scattering effects make this kinematic
approximation only a rough estimate, and fully dynamical simulations have to be performed,
in order to get an accurate estimate of the amplitude of forbidden reflections.

Using (4.15) and the results obtained by Ourmazd et al. we can conclude that the
image due to surface steps in the absence of a stacking fault can take the intensity levels 1,
1+6f2, 1+18f2, and 1+24f2. If the atomic layers only appear in pairs, then only the image
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Figure 47. Argand diagrams illustrating kinematic scattering factors for different stacking
sequences: a) Unfaulted crystal. After a complete set of layers (aAbBcC) the forbidden
reflection scattering factor is always zero. b)-d) forbidden relection scattering factor for
stacking faults at different depth in the stacking sequence, assuming that the first double
layer is defined as aA. The gray arrow in b) shows the scattering factor for the stacking
sequence n(aA− bB− cC)−aA− bB−aA−m(bB− cC−aA)− b, where n, m are arbitrary
integers. Forbidden reflections produced by stacking sequence c) have always the same
strength as those due to additional surface layers only.
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intensities 1 and 1+24f2 are observable. Although the distribution of intensity levels shown
in figure 38 for an unfaulted region of the crystal does not only show 4 distinct intensity
levels, it clearly demonstrates that there must definitely be more than just 2 intensity levels,
which is in agreement with the findings by Ourmazd et al.. The fact that there are many
more than just 4 levels at any given position along the horizontal axis is due to the fact
that the thickness gradient is not perfectly parallel to the horizontal axis of the image, and
also dynamical effects in addition to the Pendellösung oscillation of the central beam.

Figure 48 shows the intensity levels of every terrace of constant thickness as well as
the different contrast levels due to the stacking fault. The stacking fault seems to be rather
close to one of the surfaces, because boundaries in the terraced surface structure coincide
with the line of the dislocation. It is therefore very difficult to exactly determine the origin
of the contrast levels. Further experiments are necessary investigating the stacking fault
contrast levels for the case where the course of surface steps is clearly independent of the
stacking fault.

5. Conclusion and Future Work

A new mode of operation for a spherically aberration corrected TEM has been pro-
posed, which may find other applications than that of producing forbidden reflections bright-
field images of stacking faults in Si at higher resolution, as has been described here. Being
able to adjust the spherical aberration of the objective lens opens the door to many new
experiments, not possible before. The increase in resolution of the partial dislocation kink
images shows differences between different kink structures in the simulation, which might
finally be detected using HRTEM imaging. This might also open the possibility of finding
new kink structures by comparing experimental images with image simulations like the ones
shown here.

Also, the importance of atomically flat surfaces for imaging kinks along partial dis-
locations in zinc-blende and diamond-cubic materials has been demonstrated by multislice
image simulations. Successful preparation of samples with atomically flat surfaces have been
described. An interpretation of intensity levels in images produced by forbidden reflections
has been provided as far as was possible.

The results described in this chapter show that it is possible to image dislocation
kinks with better resolution and determine their density with higher accuracy than has been
achieved up to now. Future work should therefore pursue further experiments for both Si
and β-SiC samples. Accurate measurements of dislocation kink densities will give further
insight in the principles of dislocation motion, while higher resolution images may help to
confirm atomic models of single structural defects along partial dislocations in materials
with fcc, diamond, or zinc-blende crystal structures.
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Figure 48. (color) Same image of dislocation as figure 44, but noise in the intensity levels
has been removed by the procedure described in section 3.2. Top: gray scale image with
the ”patches” superimposed in it, bottom: ”patches” of constant intensity along with their
intensity value (contrast enhancing color-map).



CHAPTER 5

MICRODIFFRACTION ALONG DISLOCATION CORES

1. Introduction

Direct evidence for the atomic structures present in dislocation cores is extremely
difficult to obtain; yet these structures may exert a controlling influence on the electrical
and mechanical properties of semiconductors. High-resolution electron microscopy together
with electronic structure calculations, as well as other experimental techniques (see chapter
3 for an overview), have until now provided the main (indirect) tools for understanding
dislocation core structures. On this basis, a consensus has developed that reconstruction
of dislocation cores clears the band-gap of deep states for both the 30◦ and the 90◦ partial
dislocations in silicon, although some experimental results indicate otherwise [124].

First direct experimental evidence for the reconstruction of both of these cores will
be presented here, and it will be shown that the periodicity of their structure along the
dislocation line is twice that of the surrounding bulk material. The experimental data also
shows that certain theoretically proposed structures for defects along the dislocation core
cannot be present in the examined dislocations, and may therefore not exist at all.

1.1. Geometry. The Fourier coefficients

Ṽ (~q) = 2π

∫ ∞

−∞
V (~r) exp(2πi~r · ~q)d3~r (5.1)

of the periodic function V (~r) with periodicities of ax in the x-direction, by in the y-direction
and cz in the z-direction are non-zero only for reciprocal space vectors ~q = (qx, qy, qz) =
(h/az, k/by, l/cz), where h, k, and l are integers. This means that we can write expression
(5.1) for periodic functions as a discrete Fourier series

Ṽh,k,l = 2π
∞∑

h,k,l=−∞
V (~r) exp

(
2πi

[
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x
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z

cz

])
(5.2)

Figure 49 shows the reciprocal lattice of Silicon in the [001] projection. We will call a the
real-space distance that corresponds to the spacing between the Laue zones in reciprocal
space. It is equal to the vertical distance between adjacent lattice planes of the Si structure
in the (110) orientation.
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Figure 49. (color) Reciprocal lattice of Si in the [001] projection. The Ewald sphere (sphere
of radius 1/λ passing through [000]) for an electron energy of about 30kV is superimposed
in it. Color and size of the dots indicate the magnitude of that Fourier coefficient on
a logarithmic scale. Zero order, first order, and second order Laue Zone (ZOLZ, FOLZ,
SOLZ) are indicated by the arrows on the left. Reciprocal lattice points that intersect the
Ewald sphere will produce diffraction spots.

The discrete Fourier Transform (5.2) can only be used in the case of a periodic
function, and the values of ax, by, and cz have to correspond to the longest periodicities
in those directions, which implies that for a non-periodic function the discrete Fourier
Transform becomes exact in the limit ax, by, cz → ∞. A 1-dimensional function V ′(~r)
which is confined to a point in the x-and y-direction but extends along the z-direction and
oscillates along that axis with a periodicity of ξ can be described as

V ′(~r) = δ(x, y)
∞∑

n=−∞
Ṽn exp
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2πin

z

ξ

)

≈ 1
πε2

exp
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Ṽn exp
(

2πin
z

ξ

)
(5.3)

approximating the delta-function with a sharply peaked Gaussian. In the limit ε → 0 this
approximation becomes exact. The Fourier Transform of (5.3) is
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(5.4)

Equation (5.4) is visualized in figure 50 for two different values of ε and a Gaussian depen-
dence of Ṽn on n.

Figure 50 shows that for a function V (~r) that is almost perfectly 1-dimensional the
representation in reciprocal space is a set of parallel diffuse sheets in the (x,y)-plane, having
a reciprocal distance of 1/xi between them. As the width in the x- and y-direction of the
function grows, its representation in reciprocal space becomes more that of a 3-dimensional
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Figure 50. (color) Visualization of equation (5.4) for two different values of ε: a) ε=0.1Å,
b) ε=0.05Å. The scale of the x- and y-axes are in Å−1. The Ṽn-coefficients are assumed to
be of the form Ṽn ∝ exp(−αn2), but not according to any particular scale.

δ-function. Dislocation cores are such one-dimensional objects. Ideally they have a self-
repeating structure, which is different from that of the surrounding bulk-material, very
confined in 2 dimensions, but stretching several µm in the 3rd dimension.

Figure 51. Single (11̄1) lattice plane of a Si crystal containing a dissociated edge dislocation
and the stacking fault between them. The partial dislocations, as indicated by the shaded
areas are quasi 1-dimensional objects with a periodicity of ξ = 2a.

Figure 51 shows the model of a single layer from a faulted Silicon crystal. The dis-
locations at the edge of the stacking fault form one-dimensional objects with a periodicity
ξ along the [110] direction of twice that of the bulk material. Since ξ = 2a the potential
produced by the atomic structure of the dislocation cores will form diffuse sheets in recip-
rocal space with a distance of 1/(2a) between them, which is half as much as the vertical
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spacing of the layers of reciprocal lattice points of the bulk structure (see figure 49).

Figure 52. p

rojection with [110] layers of diffuse potential (horizontal lines) due to a dislocation core.]
Reciprocal lattice of Si in the [1̄10] projection with [110] layers of diffuse potential (horizontal
lines) due to a dislocation core. Just like in figure 49 the Ewald sphere is superimposed on
it. The intersection of the Ewald sphere with the layers of diffuse scattering will produce
rings in the diffraction pattern, which are in addition to the regular HOLZ-rings (labeled
n = 1, 2, . . . with radii G1, G2, . . . ). This diagram is not to scale.

Using a modern field-emission STEM with cold stage and imaging energy-filter tuned
to elastic scattering, it is possible to form a coherent electron probe of sub-nanometer lateral
dimensions. This may be positioned over a dislocation core in a thin slab of silicon, with the
beam parallel to the core. By utilizing Bragg diffraction effects along the beam direction,
we may compare the periodicities in this direction in the perfect crystal with that along the
core. The diffraction pattern which results from locating such a probe over a dislocation
core [174] with the beam aligned along the [1̄1̄0] core direction, will show High-Order Laue
Zone (HOLZ) rings n for every plane of allowed reflections normal to the beam, not passing
through the origin. As indicated in figure 52, these planes intersect the Ewald sphere at
radius Gn. Lattice points in plane n satisfy n = ~g · ~H where ~g is any reciprocal lattice
point in HOLZ plane n, and ~H is the zone axes, taken anti-parallel to the beam direction.
The height (along ~H) of the HOLZ is g(n)z ≈ (λ/2)G2

n. For a beam along [1̄1̄0] in silicon,
( ~H = [110]) the first HOLZ (FOLZ) plane containing allowed structure factors (such as
~g = [022] ) must be labeled n = 2, and occurs at height g(2)z = g(110) = 1/a, corresponding
to a = d(110) = ax/

√
2 = 3.8Å.

As shown in figure 52, for a probe located over the string of atoms at the core of
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a partial dislocation whose period is doubled to ξ = 2a (as in figure 51), a ”half-order”
HOLZ ring G1(n = 1) will appear. Since g(1)z = 1

2g(2)z, the radius of the ring due to the
reconstructed core is

G1 =
G2

2

√
2− λ/ξ

1− λ/ξ
≈ G2√

2
(5.5)

at high energies. Figure 53 shows such a focused electron probe superimposed on the
silicon structure containing a 90◦ partial dislocation which is double-period reconstructed,
as in figure 51. Subsection 5.3 in chapter 3 explains further the structure of this partial
dislocation.

Figure 53. (1̄1̄0) projection of the core of the double period reconstructed 90◦ partial dislo-
cation with the intensity distribution of an electron beam probe focused on the dislocation
core superimposed on it. The stacking fault is to the right of the core.

2. CBED Pattern and Image Simulations

Using initially the multislice program autoslic written by Kirkland [35] and later
S-TEM (see chapter 2, section 5 for a description of this code), diffraction patterns and
STEM images resulting from the configuration shown in figure 53 and others have been
calculated. Calculations have been performed for several different microscopes, operating
between 100kV and 200kV.

Atomic scattering factors are usually parameterized using Gaussians [63] or a com-
bination of Gaussians and Lorentzians [35,65]. Such parameterizations allow analytic inte-
gration of the atomic potential perpendicular to the plane of the potential slices used in the
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multislice algorithm. Most codes therefore project the full atomic potential
∫∞
−∞ V (~r)dz for

all the atoms whose z-position falls into a particular slice in that slice only, which is a valid
approximation, if the slices are more than 1 Å apart and are centered around the atomic
layers. For structures, in which atomic layers cannot be clearly defined, and especially,
if the atomic positions are not perfectly periodic because of small displacements used in
the frozen phonon approximation, this approximation may lead to serious artifacts. The
30◦ DP partial dislocation core with a slice configuration as shown in figure 54 would not
produce an extra Laue ring, if the full potential of the core atoms were projected into the
slice they are located in. Using the frozen phonon approximation some of the atoms would
even appear in different slices, causing serious artifacts at high scattering angles, especially,
if the slices are as thin as 0.48Å as used for the calculation of the CBED patterns in figure
55.

Figure 54. Potential slices of 1.9Å thickness for a multislice simulation of the 30 degree
partial dislocation core. If the full range of the atomic potential is projected into a single
slice, the core atoms would have exactly the same periodicity as the bulk structure and
would not produce double period structure.

Figure 55 shows microdiffraction patterns, which have been simulated for an approx-
imately 1nm small electron probe positioned along the 90◦ dislocation core. Two different
atomic structure models have been used: the SP-reconstructed model (figure 55a) and the
DP-reconstructed model (figure 55b). Scattering due to the diffuse potential layer in the
ZOLZ is visible in both patterns as strong diffuse background between the Bragg disks in
the center of the patterns. For the SP model these diffuse layers have the same vertical
spacing as the allowed bulk-crystal reciprocal lattice points, so that rings produced by their
intersection with the Ewald sphere coincide with the bulk-crystal Laue rings. The pat-
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tern produced by the DP structure shows the additional Laue ring produced by a diffuse
potential layer between the bulk crystal layers.

Figure 55. Simulated microdiffraction patterns for two different 46nm thick models of the
90◦ partial dislocation core: a) SP structure, b) DP structure. E = 100kV, Cs = 1.2mm,
df = −670Å, probe size ≈ 1Å. Temperature effects have been included using a Debye-Waller
factor of 0.44Å2.

2.1. Effects of temperature. The inelastic mean free path for plasmon scattering,
is about 1000Å. This means that most of the inelastic scattering at thicknesses lower than
that is due to phonon scattering, especially at high scattering angles. Plasmon scattering
also produces a shift in energy of the scattered electrons large enough to be filtered out by
most energy filters. Electrons scattered by phonons do not loose very much energy, and will
therefore contribute even to energy-filtered diffraction patterns.

Using the frozen phonon approximation we can calculate the TDS distribution very
accurately and determine the visibility of the Laue ring produced by the DP dislocation
core, i.e. the intensity of the ring compared to that of the background. Using u2(T ) given
by expression (2.41) (also plotted in figure 11) and the program S-TEM the intensity of the
Laue ring as well as that of the phonon background for the same scattering angle has been
calculated for the 90◦ DP partial dislocation core. The background has been estimated by
linear interpolation of the scattered intensity just inside and outside the Laue ring. Figure
56 shows the averaged intensity of the Laue ring and the interpolated background as a
function of thickness and temperature.

2.2. Effect of core length, phase switching defects, and beam coherence.
As already described in section 3 of chapter 2 there are several ways to calculate the scat-
tering amplitude of multiply scattered electrons. If we expand the Bloch wave method in
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Figure 56. (color) Averaged intensity of a) the extra Laue ring and b) the phonon back-
ground as function of temperature and sample thickness. The phonon background has been
interpolated from the intensity just inside and outside the Laue ring. This background has
then been subtracted from the total intensity in the ring to give the elastic signal only,
which has been plotted in a). The vertical scale is the same for both figures, however the
color scheme has been adjusted for maximum contrast.

scattering orders, using the result derived in appendix A we get for the amplitude of any
scattered beam ~gn in the zone-axis case

Ψ̃gn =

∣∣∣∣∣∣∣∣

∞∑

q=1

N∑

l1=0

N∑

l2=0

· · ·
N∑

lq−1=0

U~gn−~gl1
U~gl1

−~gl2
· · ·U~glq−1︸ ︷︷ ︸

q

Cq
n,l1,...lq−1,0

∣∣∣∣∣∣∣∣

2

, (5.6)

where the summation is over all the N reciprocal lattice vectors with non-vanishing scatter-
ing strength, and the coefficients Cq

n,l1,...lq−1,0 are given by expression (A.19), but not really
relevant in the following non-quantitative discussion.

The electron structure factors U~g are defined as

U~g =
2m0|e|

h2

∑

j

fj(θg) exp(2πi~g · ~rj) (5.7)

where sin(θg/2) = |~g|λ and ~rj are the atomic positions. The summation has to be done
over all the atoms illuminated by the electron beam. Any multiple scattering process which
ultimately scatters into the n = 1 Laue ring, must involve scattering by reciprocal lattice
vectors with a total z-component of

∑
gz = 1/2a, i.e. the product of Ug’s representing such

scattering processes must have the following form:

U~gl1
−~gl2

U~gl2
−~gl3

· · ·U~glq
=

∑

j

exp
(

2πizj

2a

)
F (gx,y

l1
, . . . , gx,y

lq
, xj , yj)
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We will therefore only treat those multiple scattering events that contain only a single event
with a reciprocal lattice vector of non-zero z-component (i.e. gz = 1/(2a)) without loss of
generality. The only restriction on the combination of the other scattering events is that
their total scattering vector in the gx,gy-plane has the magnitude G1, i.e. it intersects the
Ewald sphere at the radius of the n = 1 HOLZ ring.

Figure 57. Model of a 90◦ partial dislocation segment which is partially SP and DP recon-
structed. The SP segment has a length of NSP = 3, which brings the 2 DP segments out of
phase. ∆z1 . . .∆z4 define the z-component of the atomic positions within each DP segment
of length 2a. ∆z5, ∆z6 define the position of the atoms within each SP segment of length
a. The core region illuminated by the electron beam is enclosed by the 2 dashed lines.

Figure 57 shows the model of a 90◦ partial dislocation core containing segments of
DP and SP reconstruction. The DP segments can either start at z = 2na, or z = (2n+1)a.
Again, without loss of generality we will define a coordinate system so that the dislocation
core lies along the z-axis. In order to further simplify the illustration we will assume that
the atoms along the core are perfectly aligned with the z-axis (as shown in figure 64a),
i.e. their x,y-coordinates are zero. In any multiple scattering process which scatters into
the n = 1 Laue ring the structure factor responsible for the z-component of this scattering
process is then

Ug =
2m0|e|

h2

∑

j

fj(θg) exp
(

2πizj

2a

)

For the case of Silicon we can replace the atom-dependent scattering factor fj(θg) with
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fSi(θg), since all atoms are the same. If there are N1 DP segments of length 2a at a z-
position of z = 2na (n is an integer), N2 such segments at positions z = (2n+1)a, and NSP

SP segments of length a, the structure factor for becomes

Ug =
2m0|e|

h2
fSi(θg)




N1−1∑

j=0

exp
(

2πi2ja

2a

) 4∑
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)
+
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l=5 exp
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if NSP odd

0 if NSP even

]

where ∆zl are the relative z-positions of atoms within each segment as illustrated in figure
57. In order to separate 2 DP segments by a distance of (2n + 1)a the SP segment between
them must have an odd length (see figure 57), but the total number of SP segments along
the whole dislocation may still be odd. For materials involving more than one kind of atom
fj(θg) needs to remain inside the sum, which makes Ug dependent on the periodicity of each
atomic type along the dislocation core.

If the probability for the presence of odd length SP segments is non-zero, the scatter-
ing into the n = 1 Laue ring will statistically cancel. An example to demonstrate this would
be the following sequence: DP[4]-SP[3]-DP[4]-SP[4]-DP[6]-SP[1]-DP[6] (length of each seg-
ment in units of a given in square brackets). The sequence of these segments does not
matter, but in this arrangement it becomes quite clear that the scattering from the two
DP[4] segments as well as that from the two DP[6] segments is destructive. In this case any
structure factor with a z-component U(gz = 1/[2a]) vanishes.

Interestingly the kink structure for the DP-reconstructed 90◦ partial dislocation core
proposed by Bennetto et al. [137] does not introduce a phase shift, nor does it introduce
segments of SP structure, which means that aside from a lateral modulation of the extra
Laue ring intensity due to a horizontal displacement of the dislocation core the scattering
strength of the DP reconstructed 90◦ dislocation will not be affected by the presence of
kinks, as long as the line of the dislocation is not shifted outside the illuminating electron
beam by the kink. For the 30◦ partial dislocation, for which the DP reconstruction has
found wide acceptance there have been proposed a few phase switching defects as shown
in figure 64b - 64f. If a 30◦ partial dislocations produce an extra Laue ring, we have to
conclude that such defect structures cannot be present in that dislocation core.

Knowing that in the presence of odd length SP reconstructed dislocation core seg-
ments scattering into the extra Laue ring disappears, the question arises if it would be
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possible to construct experimental conditions under which the scattering into the extra
Laue ring does occur. If we could shorten the length of the electron beam probe in the
z-direction to less than the distance between two adjacent SP segments or other phase
switching defects (PSD) we expect the intensity in the Laue ring to be proportional to the
square of the length of the probe with a certain proportionality constant C. Figure 58
shows a multislice simulation for a model of the dislocation core similar to the one shown
in figure 57. The SP segment joining the two DP segments has been chosen to always have
a length of 2na, which is even. As soon as the electron beam probe is much longer than the
average distance between two PSDs the extra Laue ring will disappear. The proportionality
constant C could be determined by varying the length of the electron beam probe.

Figure 58. Calculated intensity of Laue rings averaged over the whole ring and integrated
over the width of the ring (with background subtracted) as a function of the length of the
DP segments in a model of total thickness of 46 nm. The remaining length of the dislocation
core is SP reconstructed, connected by partial kinks, as sketched in the inset. The curves
for the n = 1 and n = 2 rings are shown. This calculation was done for a 83Å × 79Å super
cell using 1024 × 1024 beams with a Debye-Waller factor accounting for temperature effects
(room temperature; no TDS).

There are two ways to only get coherent scattering from short segments of the sample
in z-direction:

1. An increase in the convergence angle will reduce the probe length. However, an
aberration corrected objective lens is necessary for angles larger than about 12mrad.

2. An increased beam energy spread will shorten the coherence length of the beam and
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thereby the coherent scattering of atoms along the core. This could be accomplished
by wobbling the accelerating voltage.

Both of these options will be discussed in the following paragraphs.
A focused electron beam is produced by a cone of reciprocal space vectors as shown

in figure 59a. Since the length of all the k-vectors on the surface shown in figure 59a have the
same length we must perform a 2-dimensional Fourier transform to obtain the 3-dimensional
shape of the incident electron probe in real space

Ψ(~r) =
∫ α

0
dθ

∫ 2π

0
dφ exp (2πik [sin(θ)cos(φ)x + sin(θ) sin(φ)y + cos(θ)z]) (5.8)

Figure 59. Reciprocal space diagram of convergent beam probe. a) An electron beam that
is focused to a small spot laterally can be represented by the sum of a range of plane waves
in reciprocal space which span a certain angular range with maximum convergence angle
α. b) Amplitude and c) phase of a possible focused electron beam in the CM200 TEM in
reciprocal space (E = 200kV, α = 10mrad, Cs = 1.2mm, df = −700Å, Cc = 1.0mm, and
∆E = 1eV).

Using Scherzer conditions the CBED/STEM probe is formed using an objective
aperture that produces an illuminating cone of half-angle α = 1.5(λ/Cs)1/4 (see figure 2
for the geometry), which is about 10mrad for the CM200 200kV (λ = 0.0251Å) TEM used
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Figure 60. Gray-scale plot of amplitude of wave packet produced by the focused electron
beam described in figure 59. The electron beam direction is along z̄, i.e. down-wards. Note
that the axes are not on the same scale. The wave packet has the typical cigar shape. The
full width at half maximum of of a slice along the z-direction at x = 0 is 1167Å.
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for most of the experiments and simulations in this chapter. This means a range in kz of
∆kz = 4 sin(α/2)2/λ = 4×10−3Å−1 for the horizontal component and ∆kxy = 2sin(α)/λ =
0.8Å−1 for the vertical component of the incident wave vector (see figure 59a). A energy
variation of ∆E = 1eV corresponds to a change of ∆k1.1 × 10−4Å−1, which is about 1
order of magnitude less than the range in kz due to the curvature of the illuminating cone
of k-vectors.

A rough estimate of the size of the focused electron beam probe can be obtained
by replacing the true shape of the wave packet in reciprocal space with a 3-dimensional
Gaussian with full width half maxima (FWHM) of about 2/3 the size of the box defined by
∆kz and ∆kxy in figure 59a). Using the uncertainty principle that ∆kz∆z = π, we obtain
a probe length in z-direction of about 1180Å. This estimate does not take into account the
true reciprocal space shape (i.e. the sharp aperture boundary), nor effects due to finite
values of Cs, df , Cc, and ∆E. Performing the 3-dimensional Fourier transform of the
true reciprocal space representation of the incident electron beam wave function whose 3-
dimensional amplitude and phase shape is shown in figures 59b and 59c respectively, yields
a real space probe amplitude distribution with a FWHM of 1167Å in the beam direction
and a shape like the one shown in figure 60 (E = 200kV, α = 10mrad, Cs = 1.2mm,
df = −700Å, Cc = 1.0mm, and ∆E = 1eV).

Figures 61 and 62 show the vertical and horizontal electron wave-function amplitude
distribution as well as the FWHM length and width of the probe as a function of the
convergence angle α for a possible aberration corrected microscope at 200kV. The scattering
intensity is proportional to the wave function amplitude squared, which reduces the FWHM
values by a factor of 1/

√
2. Focusing the probe at different depths of the sample and

changing α will reveal whether there are any PSDs within range of the focused probe at
that particular depth.

The second method to reduce the length over which we probe for the presence of
DP reconstruction is to shorten the coherence length of the electron beam, as already
mentioned. As already stated earlier for the present application the 3-dimensional problem
can be reduced to a 1-dimensional one by assuming that for a probe that is localized exactly
over the dislocation core, the 3-dimensional wave packet can be replaced by a 1-dimensional
wave packet of the same length in the z-direction, and the atoms of the dislocation core are
perfectly aligned along the z-axis. This simplified geometry is illustrated in figure 64a.

In the single scattering approximation, and assuming a Gaussian shaped wave packet
of real space FWHM ∆Z in the z-direction (i.e. a Gaussian with a spread of FWHM of
∆K = 4π ln(2)/∆Z around a mean incident wave vector ~k0) the scattering intensity for
scattering into the extra Laue ring (with a z-component of the scattering wave vector
[~k0 − ~k′]z = g(1)z = 1/(2a), being the difference between the incident wave vector ~k and
the scattered wave vector ~k′) is given by

I(g(1)z) =
∫ ∞

−∞
dk

∣∣∣∣∣∣
2m0|e|

h2
fj(θg(1))

∑

j

exp
(
2πizj [~k − ~k′]z

)
∣∣∣∣∣∣

2

exp

(
− (~k − ~k0)2

∆K2/[4 ln(2)]

)
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Figure 61. a) 1-dimensional amplitude distribution of wave-packet in the z-direction for
different convergence angles, b) FWHM of wave packet in the z-direction, or coherence
length as function of convergence angle α. An aberration corrected STEM with Cs = 10µm,
Cc = 1mm, E = 200kV, ∆E = 1eV, and df = −37Å has been assumed.

Figure 62. a) Cross-section through the electron beam amplitude distribution for different
convergence angles, b) width of the probe as function of convergence angle α. An aberration
corrected STEM with Cs = 10µm, Cc = 1mm, E = 200kV, ∆E = 1eV, and df = −37Å
has been assumed (same parameters as for figure 61.
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(5.9)

The shape and length of a wave packet for microscope parameters of the CM200 microscope
as a function of energy spread are shown in figure 63.

Figure 63. a) 1-dimensional amplitude distribution of wave-packet in the z-direction for
different energy spreads, b) FWHM of wave packet in the z-direction, or coherence length
as function of energy spread ∆E. A STEM with Cs = 0.6mm, Cc = 0mm, E = 200kV, and
df = −290Å, and α = 10mrad has been assumed.

Figure 64 illustrates one such 1-dimensional wave packet passing over a phase switch-



101

ing defect (PSD). Although the top and bottom DP segment are not of the same length
their contribution to the extra Laue ring will mostly cancel, because the (solid) Gaussian
wave packet is centered over the PSD, and the effective DP segment lengths are therefore
equal, but out of phase. However, that same wave packet has also passed over the up-
per DP segment only (dashed Gaussian), in which all the atoms interfere constructively at
scattering wave vectors on the extra Laue ring.

2.3. STEM imaging. The ideal instrument for the experiments described in this
chapter is a HR-TEM/STEM which allows very exact correlation of a BF-TEM image with
the STEM probe position. Due to the BF-TEM strain contrast produced by dislocations
and their visibility in high-resolution lattice images the dislocation cores can be identified
easily in good quality TEM images. However focusing the electron beam to a 1nm size spot
will distort the image and one cannot verify the core position anymore. Most microscopes
also use different gun lens settings for microdiffraction mode to produce a sufficiently small
probe.

If the dislocation core can be identified in STEM images, its microdiffraction pattern
can be recorded by simply stopping the beam scan when the STEM probe is over the
dislocation core and record the microdiffraction pattern, assuming that the microscope is
also equipped with a suitable recording device (CCD, image plate, film, etc.). This method
also requires a probe stability of at least better than about 1Å per second. While for many
dedicated STEM and some modern TEM/STEM instruments this is no problem, the probe
drift in the CM200 used for the experiments presented here was too large to allow this.

The unique feature in the diffraction pattern of any double period reconstructed
dislocation core is the presence of the extra Laue ring. By designing an annular detector
which only detects scattering into angles corresponding to that of the n = 1 Laue ring we
expect to see a higher signal in the STEM image at beam positions corresponding to regions
of double period structure, like those of DP reconstructed dislocation cores. In order to
quantify the expected effect STEM images have been simulated using the program S-TEM .
Structural models of dissociated dislocations have been calculated by João Francisco Justo
Filho at the Instituto de Fisica da Universidade de São Paulo, Brazil using the EDIP method
developed by him and co-workers [158]. João Justo’s more detailed description of how he
did the calculation have been included in appendix C.

Figure 65 shows two simulated microdiffraction patterns on which portions of the
annular detector have been superimposed in order to show its width and position with
respect to the pattern. The detector is meant to mainly detect scattering into the extra
Laue ring. This ADF-detector matches the one used for the experiments on the CM200 TEM
described in section 3. STEM image simulations will be shown in section 3 in comparison
with experimental results.
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Figure 64. Illustration of a scattering of a 1-dimensional wave packet from the dislocation
core. a) 1-D diagram of the wave packet as it travels along the dislocation core. The
dislocation core contains a phase switching defect (PSD) at the position pointed to by the
arrow. a) - e) Models of possible defect structures along a 30◦ partial dislocation core as
published by Nunes et al. [165]. b) - c) Defect structures that do not switch the phase of the
reconstruction, d) - f) phase switching defects (PSDs). The different defects were given the
following names a) left kink (LK), b) alternative structure for left kink (LK’) c), d) phase
switching defects e) right kink (RK).
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Figure 65. Simulated diffraction patterns produced by a focused 200kV electron probe
positioned over the 30◦ and 90◦ DP dislocation cores. The calculation has been done for a
temperature of about 20K. The simulated sample thickness was 188Å. The black arcs over
the inner Laue ring indicate the width and position of the ADF detector, which covers the
whole circle. The patterns are displayed on a logarithmic scale.

3. Experimental Results

Experiments have been done using two different microscopes and a third microscope
has been modified to perform further experiments:

1. Phillips CM300-FEG-Ultra-twin: 300kV High Resolution TEM at Lawrence-Berkeley
National Labatory in Berkeley, CA. Coherent illumination due to the field emission
gun. This microscope is equipped with a Gatan Imaging Filter (GIF) and a 2048 ×
2048 pixel CCD camera.

2. Phillips CM200-FEG: 200kV High Resolution TEM with a maximum resolution of
2.2Å, coherent illumination due to the Field Emission Gun. This microscope is
retrofitted with a scanning unit and two annular dark-field (ADF) and one bright-field
(BF) detector. The scanning electronics by Emispec drives the beam alignment coils
which have not initially been designed for high resolution STEM imaging. Their large
drift makes high-resolution STEM imaging a difficult task and recording the microd-
iffraction pattern of an area defined with Angstrom accuracy virtually impossible.

3. MIDAS: 100kV UHV VG-STEM with UHV sample preparation chamber. Because
of its ultra-high vacuum well suited for surface science applications, but also mi-
crodiffraction due to its comparatively stable scanning electronics and low risk of
contamination.

3.1. Energy Filtered Experiments at 300kV. The first experiments to test for
the presence of the n = 1 Laue ring have been done using the One-Angström Microscope
(OÅM) at the National Center for Electron Microscopy (NCEM) at the Lawrence Berkley
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National Lab in Berkley, CA. The OÅM is a FEI CM300 high-resolution TEM operating
at 300kV, equipped with a Gatan imaging filter (GIF), and has been used to record very
high-quality data used for through-focus reconstructions [49, 50], obtaining exit face wave-
functions with a resolution down to 0.8Å [52, 175]. For these experiments the microscope
has been aligned by Christian Kisielowski and Chris Nelson. Special lens settings had to be
installed to allow large diffraction angles to pass through the GIF.

Figure 66. HRTEM image of radiation damage effects produced by a focused 300kV
electron probe after short exposure time. The probe had been positioned over this thin
(< 100Å thick) region thought to be a dislocation core and left there for only several sec-
onds. Recorded on 2K x 2K CCD camera through GIF on CM300 at Lawrence Berkeley
National Lab.

The strategy for these experiments was to find a dislocation core in the high-
resolution image, and then focus the probe on it, in order to record its microdiffraction
pattern. Since the strain field induced by the dislocations warps the sample, lattice images
needed to be recorded from very thin areas, where errors in the alignment are less critical.

Figures 66 and 67 show the damage produced by the electron beam in these thin
areas, making experiments using a 300kV focused electron probe impossible. It was therefore
decided to continue with experiments at a lower voltage, and with a cold stage, which further
reduces the risk of damage, and also reduces the background signal due to TDS.

3.2. Experiments at 200kV and Low Temperature. One of the results ob-
tained from experiments using the CM300 TEM was that an accelerating voltage of less
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Figure 67. HRTEM image of radiation damage effects produced by a focused 300kV electron
probe after short exposure time. This image was recorded under similar conditions as figure
66, only that the probe was positioned over a perfect crystal region, exposing it to the
focused electron beam for about 15 sec. Recorded on 2K x 2K CCD camera through GIF
on CM300 at Lawrence Berkeley National Lab.
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than 300kV was required. The CM200 at ASU is equipped with an EMISPEC scan gen-
erator, a liquid Nitrogen cold stage, but no energy filter. Since plasmon scattering occurs
with rather small scattering angles and for thin specimen multiple inelastic scattering events
are comparatively unlikely, most of the high angle scattering is due to HOLZ effects and
phonons. Plasmon scattering produces a background proportional to the elastic signal in
diffraction patterns of thin specimen and does not alter the angular distribution of the
elastic and phonon scattered electrons. Cooling the sample to -176◦C , as is possible with
the cold stage available for the CM200, drastically reduces phonon scattering, and enhances
elastic scattering due to a smaller Debye-Waller factor. Calculations have shown that for
thin specimen the increase in measurable signal is much higher than that due to energy
filtering.

Figure 68. Plot of the ratio of experimentally measured intensities of the elastic scattering in
the bulk-Si(110) HOLZ-ring and background at 95K. IHOLZ is the total integrated intensity
in the HOLZ ring, and Ibackgr the background of the HOLZ ring, interpolated from the signal
just inside and outside the ring.

Figure 68 shows a plot of the ratio of

r =
∫ 2π

0
dφ

IHOLZ(φ)− Ibackgr(φ)
Ibackgr(φ)

=
IHOLZ − Ibackgr

Ibackgr

where IHOLZ(φ) − Ibackgr(φ) is the difference between the intensity in the diffraction pat-
tern at a particular angle φ on the Laue-ring and the background signal, which has been
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interpolated from the diffracted intensity just inside and outside the ring at the same angle.
The diffraction patterns have been recorded on the CM200 microscope at 200kV with a
beam convergence angle of 3.5mrad using a liquid Nitrogen cold stage, which cooled the
sample to 95K. The same sample as that used for dislocation STEM imaging described in
this section has been used. The thickness of the area of the sample from which the patterns
have been recorded has been determined from the intensity distribution in the low order
CBED disks.

The ratio r depends strongly on temperature. Using the Einstein model for calcu-
lating TDS by the frozen phonon method in multislice calculations, the root mean square
(RMS) vibrational amplitude 〈u〉 =

√
u2 needs to be known (see section 4 of chapter 2 for

further details). Multislice calculations have been done for different values of 〈u〉 for the
same microscope parameters used in the experiment. The ratio r in those simulated diffrac-
tion patterns has been plotted as a function of 〈u〉 in figure 69, averaged over a a range
in thickness from 100Å to 600Å. The simulated patterns in this thickness range showed no
trend in r(t), which is in agreement with the experimental data shown in figure 68. The
value of 〈u〉 for which simulated and experimental value of r agree, is approximately 0.065Å,
which has been used for the multislice simulations described in the remainder of this section.

Most inelastic scattering events other than TDS occur mainly in the forward di-
rection. One therefore expects their contribution to be roughly proportional to the total
intensity, in which case it does not contribute to the value of r. This means that using
non-filtered diffraction patterns for the estimation of 〈u〉 is valid, at least for thin specimen
up to about 600Å. In fact, the decreasing value of r observed in the experimental data at
higher thicknesses is probably due to the fact that this approximation starts to break down.

Since the probe stability in the CM200 is rather poor, it was impossible to record the
actual microdiffraction pattern of a single dislocation core with a sufficiently small probe,
because it would require the probe to remain at the same position with respect to the
sample for several seconds at Å-accuracy. Instead of trying to record a single pattern, an
ADF-detector has been designed to collect all the scattering into the angular range which
would potentially be filled with the extra Laue-ring, if the probe were positioned over a
DP-reconstructed core.

Since the existing ADF-detector has a very large angular range, an adapter has been
designed with the help of Karl Weiss at the Center for Solid State Science at ASU and
machined by the ASU machine shop, which reduces the detector to a ring that has a width
of about 10% of its radius. The shape of the adapter and the way it modifies the active
area of the existing ADF-detector is illustrated in figure 70. The hole in the adapter still
allows a parallel detection of ADF- and EELS-signal.

Figure 71 shows an experimental microdiffraction pattern with the shape and posi-
tion of the ADF-detector superimposed on it. The diffraction patterns have been aligned
very carefully to position them with respect to the detector. The microscope remained in
diffraction mode for the whole alignment procedure. This is important, because switch-
ing from diffraction to image mode, or TEM to nano-diffraction mode affects the current
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Figure 69. Plot of the ratio of simulated intensities of the elastic scattering in the bulk-
Si(110) HOLZ-ring and background as in figure 68 for different values of the mean square
vibrational amplitude 〈u〉. The ratio r = (IHOLZ − Ibackgr)/Ibackgr has been averaged over
a range in thickness from 100Å to 600Å.
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Figure 70. This ”mushroom” adapter converts the large ADF-detector installed on the
CM200 into a thin annular detector. The adapter is made of aluminum covering most
of the ADF-detector, leaving a ring with a width of 10% its radius exposed to scattered
electrons. The hole in the center of the adapter allows the direct beam to pass through on
the EELS spectrometer.

Figure 71. Si(110) microdiffraction pattern with ADF detector superimposed on it. This
pattern has been recorded on a 1024 × 1024 pixel CCD camera. The sample has been
cooled to -176◦C .
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through several lenses, which may produce errors in the alignment. The position of the
ADF-detector with respect to the CCD has been determined by positioning the central
beam of a diffraction pattern produced by a thin area of the specimen, or no specimen at
all, over different parts of the detector while using the detected intensity as a indication
whether the probe was actually focused on the detector. By replacing the detector with
the CCD camera and taking a very short exposure, images with bright spots in different
positions were recorded. The superposition of 5 or more such images defines a ring, which
is equal to the projection of the detector annulus on the plane of the CCD.

For a fixed vertical electron beam crossover position an increase in size of the diffrac-
tion pattern in the CCD-camera plane by a factor of

√
2 produces an increase in diffraction

pattern size in the ADF-detector plane of the same ratio. By adjusting the camera length
(using a camera length of 40mm, and fine tune it by adjusting the P3 lens current in free
lens control mode) to let the n = 2 Laue ring in a microdiffraction pattern recorded on the
CCD coincide with a circle concentric with the ADF-detector annulus in the CCD camera
plane (determined in the way described earlier), but a

√
2 times larger radius, the proper

alignment of the ADF-detector to detect scattering into the n = 1 Laue ring was completed.
Diffraction patterns have been recorded on the CCD camera while the beam was

scanning over the sample to test the lateral movement of diffraction patterns while scanning.
These tests have shown that the detector alignment was good for every beam position during
a scan, especially at high magnification.

Figure 72 shows an experimental ADF-STEM image recorded with the detector
configuration described above. Although we only collect radiation scattered to rather high
angles, contrast due to the dislocation strain field is visible.

Figure 73 shows an experimental ADF-STEM image recorded under the conditions
described above. Slightly changing the size of the diffraction pattern, so that the Laue ring
is not aligned with the detector anymore, will bring the contrast to zero. This means that
the signal in the image is due to the presence of an extra Laue ring, indicating a locally
different structure than that of the bulk material, in that it has twice its periodicity along
the electron beam direction.

STEM simulations using the code S-TEM and models calculated by João Justo (see
section 2.3 in this chapter) are shown in figure 74. The models included the full strain-field,
which was required to make sure that strain contrast cannot account for the experimentally
observed image contrast. Simulations have been done for both proposed core structural
models of the 90◦ partial. Comparing figures 73 and 74 It can be seen very clearly that
both of the partial dislocations are reconstructed with a core-structure that has twice the
periodicity along the electron beam direction as the bulk material surrounding it.

Comparing weak-beam TEM images of dislocations with ADF-STEM images shows
that the observed contrast in figure 73 is indeed due to the presence of a dislocation. Also
the wide-ranging strain contrast observed in weak-beam and BF TEM images seems to be
much less in the ADF-STEM image, where the bright dislocation contrast is much more
localized. One of the reasons for using a fully relaxed model of a dissociated edge dislocation
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for the STEM simulation was to differentiate between image contrast due to the dislocation
strain field and its core reconstruction periodicity. Since total energy calculations involving
a super-cell large enough to contain the full strain-field are computationally very expensive,
a smaller cell had to be used. However figure 74a already shows some of the strain contrast,
and it can be seen that it is much less intense than the signal due to the presence of the
extra Laue ring.

3.3. Modification of MIDAS for recording the extra Laue ring. In order
to record microdiffraction patterns containing the extra Laue ring, a very stable, yet small
electron beam probe is required. Being able to quickly switch from imaging to diffraction
mode is also essential, while maintaining the probe position with high accuracy.

A VG HB501 UHV 100kV STEM has been modified to fulfill all these requirements.
A very sensitive CCD camera with direct fiber-optic coupling to a very sensitive phosphor
screen on the top of the column of the microscope has been installed. The absence of a
mechanical shutter avoids vibrations of the column and thereby the sample stage. A thin
annular dark field (ADF) detector has been designed, consisting of an oval ring of metal,
which has been coated with phosphor. The ring has been installed at a 45◦ angle, reflecting
most of the fluorescent light produced by electrons reaching the phospor on the ring into a
photo multiplier tube, where it is converted into an electrical signal, which is then plotted as
a function of beam position to form an image. The oval ADF detector is round in projection,
as indicated by the ”virtual” ADF detector shown in figure 76.

While this setup can be used for the same experimental procedure as described in
the previous subsection (except for the low temperature), it also provides the opportunity
to very easily record a full microdiffraction pattern for any position in the STEM image.
The size of the diffraction pattern can be selected over a fairly large range with just the
last projector lens. By simply stopping the beam at the desired position in the image and
reducing the size of the diffraction pattern, a microdiffraction pattern for that particular
pixel in the image can be recorded using the CCD camera. This procedure does not require
a change between modes of operation, nor does it affect the electron beam before it passes
through the sample. Experiments using this setup are currently being done.

4. Conclusion and Future Work

A new method for measuring the structural periodicity along dislocation cores using
a focused electron beam has been introduced, which is able to probe single dislocations.
This method works for any crystal structure, in which dislocation core structures have
a longer periodicity along the dislocation line than the surrounding bulk-material. The
method has been tested for the structure of both partial dislocation cores in Silicon, giving
direct evidence for the double period reconstruction of both, the 30◦ and the 90◦ partial
dislocation cores at a temperature of 95K.

The experimental data has been compared with very exact multiple scattering cal-
culations which also include thermal diffuse scattering by the frozen phonon approximation.
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A Einstein-model vibrational amplitude of 〈u〉 = 0.064Å has been determined for the atoms
in the perfect Silicon lattice at 95K. The models, which were calculated by João Justo for
these simulations were fully relaxed structures containing the two partial dislocations, the
stacking fault, and the strain field around these defects. Detailed STEM simulations for the
single period and double period reconstructed model for the 90◦ partial dislocation core in
Silicon show a very clear difference in the resulting images, allowing the experimental data
to be clearly identified as steming from a double period structure of both, the 30◦ and the
90◦ partial dislcoation core.

Since this method is not limited to dislocation cores the diamond cubic structure,
future work may include its application to many other materials, such as inter-metallics.
One requirement of this method is that the periodicity of the dislocation core structure
is greater than that of the surrounding bulk material. Also, materials with a rather large
Debye-temperature (e.g. Diamond) may provide even better experimental results, since the
background signal due to phonon scattering will be reduced.

Repeating the experiments (STEM and microdiffraction on MIDAS) described in
this chapter at different temperatures will allow one to measure potential changes in the
length of dislocation core which is DP reconstructed as a function of temperature.
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Figure 72. Low-resolution ADF-STEM image recorded with the detector tuned to the extra
Laue ring. The image shows 3 dislocations running parallel to the beam direction with their
associated strain contrast.
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Figure 73. ADF-STEM image of end-on dissociated dislocation. The camera length has
been adjusted to match the size of the ADF detector to the size of the additional Laue
ring expected indicating DP reconstruction of the dislocation cores. Recorded on CM200
at 200kV using a liquid N stage to cool the sample to 95K in order to enhance contrast of
the elastic signal.
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Figure 74. Simulated ADF-STEM images using the same microscope parameters, detector
geometry and intensity scale as figure 73 E = 200kV, Cs = 1.2mm, df = −400Å, Cc =
1.0mm, dE/E = 5× 10−6, T = 95K. Part of the model used for simulating the lower image
is shown in figure 20 A RMS vibrational amplitude of 0.064Å has been used for including
TDS, as measured by fitting the TDS background of experimental diffraction patterns.
Effects due to a finite source size and probe vibration have been included by convoluting
the image with Gaussian of 8Å width. The ADF detector covered the angular range of 76
. . . 84mrad. The size of each image pixel is 2Å × 2Å . Top: 30◦ and a DP-reconstructed
90◦ partial dislocation. Bottom: 30◦ and a SP-reconstructed 90◦ partial dislocation. The
30◦ partial is always DP reconstructed.
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Figure 75. Linescan across simulated STEM images for different detector widths. Solid
line: 76 . . . 84mrad, dashed line: 71 . . . 91mrad. The intensity for the wide detector (dashed
line) has been scaled to be equal to that of the thin detector (solid line) at the 30◦ partial
peak. The size and position of both detectors is also shown in the inset.
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Figure 76. Microdiffraction and ADF detector system in MIDAS.



APPENDIX A

A NEW EXPANSION OF THE MATRIX EXPONENTIAL OF TWO

NON-COMMUTING MATRICES AND ITS APPLICATION OF TO SOLVE THE

MULTIPLE SCATTERING INVERSION PROBLEM
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1. Introduction

Mathematical models of many problems in biology, physics, and economics involve
systems of linear, constant coefficient equations.

δx

δλ
(λ) = Ax(λ)

Such systems of equations have the general solution

x(λ) = eλAx(0)

As an example the solution of probably the most fundamental equation in modern physics,
the Schrödinger equation,

i
δΨ(~r, t)

δt
= HΨ(~r, t) (A.1)

falls into this class, where the Hamiltonian H = h̄/(2m|e|)∇2+V is a square matrix that can
be split into a potential energy term, the matrix V , and a diagonal matrix containing the
kinetic energy terms. Assuming that the wave function Ψ(~r, t) = Φ(~r) exp(2πi[kz + Et/h])
has the form of a modulated plane wave and the second order derivative of Φ(~r) in the
direction of its propagation (z) is negligible, the time-independent Schrödinger equation
can also be written as a system of linear differential equations in z

δΦ(~r)
δz

=

[(
i∇2

xy

4πkz
−

~kxy

kz
· ~∇xy

)
+

i

4πkz
V (~r)

]
Φ(~r) = 0, (A.2)

where we have the general matrix of potential energy terms iV/(4πkz) and a diagonal
matrix for the kinetic energy. In reciprocal space the differential operators ∇2

xy and ∇xy

turn into linear operators, making this also a problem of the class treated in this paper. A
prominent example would be multiple scattering of high energy particles in matter, or rather
its inversion, where the problem is that of determining the (periodic) scattering potential
V (~r) from the scattered radiation, which is equivalent to finding A from the moduli of the
entries of a single column of the matrix S = exp(λ[A + B]), where B is a diagonal matrix
with known elements. Varying the elements in B lets us set up many of these systems of
equations, but unless we can find some linear approximation for them, they will still remain
hard to solve directly. The purpose of this paper is to provide a general expansion which
allows us to express the matrix exponential S = exp(λ[A + B]) as

Sn,m = eλbnδn,m +
∞∑

q=1

N∑

l1=1

· · ·
N∑

lq−1=1

an,l1 · · · alq−1,mC
(q)
n,l1,...lq−1,m(B, λ)

where an,m are elements of A, and C
(q)
n,l1,...lq−1,m(B, λ) is an analytical expressions in elements

of B and λ.
The convergence of this expansion will be discussed and is shown to be superior to

the Taylor expansion in terms of (λ[A+B]), especially if the largest elements of B are larger
than the largest element of A.
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This expansion provides a disentanglement of the matrix exponential into a sum of
terms containing different length products of elements of A with known coefficients. The
inversion of convergent beam electron diffraction (CBED) patterns is a problem of exactly
this class. CBED patterns, whose scattering intensity, expressed in the matrix exponential
Bloch wave formalism, provide experimental data for the moduli of certain elements in the
matrix S for fixed structure factors in the matrix A, but many different matrices B. The
application of this expansion to the inversion of CBED patterns will therefore be discussed.

2. Expansion of the Matrix Exponential

There exist many different ways to compute the matrix exponential S = exp(M).
Nineteen of them are listed in [176]. Computing the matrix exponential from its Taylor
expansion is probably one of the least efficient ways. However this method involves only
integer powers of matrix elements, allowing every elements of S to be expressed as a poly-
nomial of elements in M in a straightforward way. The matrix exponential is defined as

S = eλ(A+B) = lim
p→∞

p∑

j=0

λj

j!
(A + B)j (A.3)

where

[
(A + B)j

]
n,m

=
N∑

l1=1

N∑

l2=1

· · ·
N∑

lj−1=1

(an,l1 + bn,l1)(al1,l2 + bl1,l2) · · ·

(alj−1,m + blj−1,m)

= bj
nδn,m +

j∑

q=1

N∑

l1=1

N∑

l2=1

· · ·
N∑

lq−1=1︸ ︷︷ ︸
q−1

an,l1al1,l2 · · · alq−1,m

j−q∑

j0=0

j−q−j1∑

j1=0

· · ·
j−q−

∑q−2

i=0
ji∑

jq−1=0

bj0
n bj1

l1
· · · bjq−1

lq−1
b
j−q−

∑q−1

i=0
ji

m

= bj
nδn,m +

j∑

q=1

N∑

l1=1

N∑

l2=1

· · ·
N∑

lq−1=1

an,l1al1,l2 · · · (A.4)

alq−1,mC
(j−q,q)
n,l1,...lq−1,m

and (setting l0 = n, lq = m)

C
(j,q)
l0,l1,...lq−1,lq

= bj
lq

j∑

j0=0

(
bl0

blq

)j0 j−j0∑

j1=0

(
bl1

blq

)j1

· · ·
j−

∑q−2

i=0
ji∑

jq−1=0

(
blq−1

blq

)jq−1

︸ ︷︷ ︸
q

.
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If blq−1 = blq then the last sum is just j + 1−∑q−2
i=0 ji which gives

C
(j,q)
l0,l1,...lq−1,lq

=
δ

δblq−1


bj+1

lq−1

j∑

j0=0

(
bl0

blq−1

)j0

· · ·
j−

∑q−3

i=0
ji∑

jq−2=0

(
blq−2

blq−1

)jq−2




In general we may have blq−d
= . . . = blq−2 = blq−1 = blq , 0 ≤ d ≤ q. Using

N∑

j1=0

N−j1∑

j2=0

. . .

N−
∑d

i=1
ji∑

jd=0

1 =
(N + 1)(N + 2) · · · (N + d)

d!
=

(
N + d

d

)
(A.5)

we get

C
(j,q)
l0,l1,...lq−1,lq

=
1
d!

(
δ

δblq−d

)d

bj+d

lq−d

j∑

j0=0

(
bl0

blq−d

)j0

· · ·

j−
∑q−d−2

i=0
ji∑

jq−d−1=0

(
blq−d−1

blq−d

)jq−d−1




=
1
d!

(
δ

δblq−d

)d

bd
lq−d

C
(j,q−d)
l0,l1,...lq−d

(A.6)

An equivalent expression is given in [177]. It can be shown that we arrive at the same
result by treating all the bli at first as non-degenerate and treat the degenerate case as
limε1,...εd→0 C

(j,q)
l0,l1,...lq−1,lq

, where blq−1 = blq(1 + ε1) . . . blq−d
= blq(1 + εd). We will therefore

now first concentrate on the non-degenerate case.
If blq−1 6= blq the last sum is a finite geometric series:

C
(j,q)
l0,l1,...lq−1,lq

= bj
lq

j∑

j0=0

(
bl0

blq

)j0

· · ·
j−

∑q−3

i=0
ji∑

jq−2=0

(
blq−2

blq

)jq−2

1−
(

blq−1

blq

)j+1−
∑q−2

i=0
ji

1−
(

blq−1

blq

)

=
1

1−
(

blq−1

blq

)bj
lq

j∑

j0=0

(
bl0

blq

)j0

· · ·
j−

∑q−3

i=0
ji∑

jq−2=0

(
blq−2

blq

)jq−2

−

(
blq−1

blq

)

1−
(

blq−1

blq

)bj
lq−1

j∑

j0=0

(
bl0

blq−1

)j0

· · ·
j−

∑q−3

i=0
ji∑

jq−2=0

(
blq−2

blq−1

)jq−2

=
blq−1

blq−1 − blq

C
(j,q−1)
l0,l1,...lq−1

+
blq

blq − blq−1

C
(j,q−1)
l0,l1,...lq−2,lq

, (A.7)
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and in particular for q = 0, 1:

C
(j,0)
l0

= bj
l0

C
(j,1)
l0,l1

=





bj+1
l0

bl0
−bl1

+
bj+1
l1

bl1
−bl0

if bl0 6= bl1

δ
δb0

bj+1
l0

=
(j+1

1

) bj+1
l0
bl0

if bl0 = bl1

In general, for non-degenerate blk (k = 0, . . . q) we get the following result

C
(j,q)
l0,l1,...lq

=
q∑

k=0

bj+q
lk

q∏

r=0

r 6=k

(blk − blr)
−1 (A.8)

We will give the proof by induction.

C
(j,q+1)
l0,...lq ,lq+1

=
blq

blq − blq+1

C
(j,q)
l0,...lq

+
blq+1

blq+1 − blq

C
(j,q)
l0,...lq−1,lq+1

=
q−1∑

k=0

bj+q
lk

q−1∏

r=0

r 6=k

(blk − blr)
−1

(
blq

(blq − blq+1)(blk − blq)
+

blq+1

(blq+1 − blq)(blk − blq+1)

)
+

bj+q+1
lq

blq − blq+1

q−1∏

r=0

(blq − blr)
−1 +

bj+q+1
lq+1

blq+1 − blq

q−1∏

r=0

(blq+1 − blr)
−1

=
q−1∑

k=0

bj+q
lk

q−1∏

r=0

r 6=k

(blk − blr)
−1 blk

(blk − blq+1)(blk − blq)
+

bj+q+1
lq

q+1∏

r=0

r 6=q

(blq − blr)
−1 + bj+q+1

lq+1

q+1∏

r=0

r 6=q+1

(blq+1 − blr)
−1

=
q+1∑

k=0

bj+q+1
lk

q+1∏

r=0

r 6=k

(blk − blr)
−1 = C

(j,q+1)
l0,...lq ,lq+1

Let us now consider the degenerate case. Let us assume that the values bl0 , . . . bld ,
(d ≥ 0) are almost degenerate, i.e. bl0 = b′l0 + ε0, . . . bld = b′l0 + εd. Then the degenerate
case is defined by the limit ε0, . . . εd → 0.

C
(j,q)
l0,...lq

= lim
ε1,...εd→0




d∑

k=0

(b′l0 + εk)j+q
d∏

r=0

r 6=k

1
εk − εr

q∏

r=d+1

1
((b′l0 + εk)− blr)

+

q∑

k=d+1

bj+q
lk

d∏

r=0

1
blk − (b′l0 + εk)

q∏

r=d+1

r 6=k

(blk − blr)
−1
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Since the limit is independent of the direction from which we approach it, we choose εk =
εeikφ0 , with φ0 = 2π/(d + 1), i.e. ε0 = ε, ε1 = εeiφ0 , etc.. With this choice we can make use
of the following equalities:

d∑

k=0

eikφ0 =
d∑

k=0

(eikφ0)s =

(
d∑

k=0

eikφ0

)s

= 0, s = 1, 2, . . . (A.9)

d∑

k1=0

k1 6=k

(eik1φ0)s = −eiskφ0 (A.10)

d∑

k1=0

k1 6=k

d∑

k2=0

k2 6=k,k1

. . .
d∑

ks=0

ks 6=k,k1,...ks−1

eik1φ0eik2φ0 · · · eiksφ0 = (−1)ss!eiskφ0 (A.11)

d∏

k′=0

k′ 6=k

1
eikφ0 − eik′φ0

=
eikφ0

d + 1
(A.12)

We will also define a new variable name: b0,r = b′l0 − blr .

C
(j,q)
l0,...lq

= lim
ε→0




d∑

k=0








j+q∑

j′=0

(
j + q

j′

)
bj+q−j′
l0

εj′eij′kφ0


 ε−d

d∏

r=0

r 6=k

1
eikφ0 − eirφ0

q∏

r=d+1

r 6=k

1
(b0,r + εeikφ0)






 +

q∑

k=d+1

bj+q
lk

(blk − bl0)d+1

q∏

r=d+1

r 6=k

(blk − blr)
−1

=
j+q∑

j′=0

(
j + q

j′

)
bj+q−j′
l0

1
(d + 1)

lim
ε→0




∑d
k=0 eikφ0eij′kφ0εj′ ∏d

k′=0

k′ 6=k

∏q
r=d+1(b0,r + εeik′φ0)

εd
∏d

k′=0

∏q
r=d+1(b0,r + εeik′φ0)


 +

q∑

k=d+1

bj+q
lk

(blk − bl0)d+1

q∏

r=d+1

r 6=k

(blk − blr)
−1 (A.13)

using (A.12). For i > d the limit of the expression in square brackets is zero. For i ≤ d we
need to evaluate that expression explicitly. Using (A.9) and some thought we get for the
denominator

εd
d∏

k′=0

q∏

r=d+1

(b0,r + eik′φ0ε) = εd
d∏

k′=0

q∏

r=d+1

b0,r = εd




q∏

r=d+1

b0,r




d+1

(A.14)



124

The numerator needs to be expanded in powers of ε. The product

d∏

k′=0

k′ 6=k

q∏

r=d+1

(b0,r + εeik′φ0) =
d(q−d)∑

s=0

εsP (s)(k, d, q, φ0)

over all possible combinations of r and k′ 6= k can be expressed in a sum of terms, each
involving a certain power of ε. The first one, of course is just the product over all the first
terms in the sum (b0,r + εeik′φ0), i.e.

P (0)(d, q) =
q∏

r=d+1

bd
0,r, (A.15)

where the power d comes from the fact that there are d different values of k′ = 0 . . . d,
k′ 6= k. The next few terms are

εP (1)(k, d, q, φ0) = ε
q∏

r=d+1

bd
0,r




q∑

r=d+1

∑d
k1=0

k1 6=k

eik1φ0

b0,r




= −εeikφ0

q∏

r=d+1

bd
0,r




q∑

r=d+1

1
b0,r


 (A.16)

ε2P (2)(k, d, q, φ0) =
1
2!

ε2
q∏

r=d+1

bd
0,r




q∑

r1=d+1

q∑

r2=d+1

r2 6=r1

(
∑d

k1=0

k1 6=k

eik1φ0

)2

b0,r1b0,r2

+

q∑

r=d+1

∑d
k1=0

k1 6=k

∑d
k2=0

k2 6=k,k1

eik1φ0eik2φ0

b2
0,r




=
1
2!

ε22!ei2kφ0

q∏

r=d+1

bd
0,r




q∑

r1=d+2

r1−1∑

r2=d+1

1
b0,r1b0,r2

+
q∑

r=d+1

1
b2
0,r


 (A.17)

where we used (A.10) in (A.16) and (A.10) and (A.11) in (A.17). The 1/2! term accounts
for the times we double counted terms when performing the double sum. The left hand
side of equation (A.17) demonstrates that we have to carefully separate products containing
the same index r twice from those that don’t. If the same index r appears twice we need
to make sure that we don’t also have the same k1 index twice in the same term. This is
because we are trying to find all possible combinations of sums (b0,r + εeik′φ0) out of a given
pool without multiplying one with itself. This method can be extended to any power s > 0
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of ε:

P (s)(k, d, q, φ0) =
1
s!

q∏

r=d+1

bd
0,r


s!

q∑

r1=d+s

. . .

rs−1−1∑

rs=d+1

(
−eikφ0

)s

b0,r1 · · · b0,rs

+

(
s

2

) q∑

r=d+1

(−1)22!ei2kφ0

b2
0,r


(s− 2)!

q∑

r1=d+s−2

r1 6=r

. . .

rs−3−1∑

rs−2=d+1

rs−2 6=r

(
−eikφ0

)s−2

b0,r1 · · · b0,rs−2

+

(
s− 2

2

)
r∑

r1=d+1

−1
(−1)22!ei2kφ0

b2
0,r1

(s− 4)!
q∑

r2=d+s−2

r2 6=r,r1

. . .

rs−4−1∑

rs−3=d+1

rs−4 6=r,r1

(
−eikφ0

)s−2

b0,r2 · · · b0,rs−3

+ . . .


 + . . .

+

(
s

s

) q∑

r=d+1

(−1)ss!eiskφ0

bs
0,r

(s− s)!




Writing down a few of those terms one will soon realize that the binomial coefficients due
to the terms with products of multiple equal b0,r always cancel with the factorials that stem
from the products with different b0,r. We can therefore combine all those different sums
into a single s-dimensional sum:

P (s)(k, d, q, φ0) =
q∏

r=d+1

bd
0,r(−1)seiskφ0




q∑

r1=d+1

1
b0,r1

r1∑

r2=d+1

1
b0,r2

. . .

rs−1∑

rs=d+1

1
b0,rs


 (A.18)

If we perform the summation over k in

d∑

k=0

eikφ0eij′kφ0eiskφ0 =
d∑

k=0

e2πik(j′+1+s)/(d+1)

=

{
(d + 1) if (j′ + 1 + s)/(d + 1) = 1, 2, . . .

0 else

because of (A.9). Since we have the upper limit of s ≤ d− j′, the only non-vanishing term
is the one with s = d − j′, for which also the powers of ε cancel. This allows us to write
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down the limit of the expression in square brackets in (A.13)

lim
ε→0




∑d
k=0 eikφ0eij′kφ0εj′ ∏d

k′=0

k′ 6=k

∏q
r=d+1(b0,r + εeik′φ0)

εd
∏d

k′=0

∏q
r=d+1(b0,r + εeik′φ0)




= lim
ε→0




d∑

k=0

εj′−dei(j′+1)kφ0

d∏

k′=0

k′ 6=k

q∏

r=d+1

(b0,r + εeik′φ0)




= (d + 1)(−1)d−j′
q∏

r=d+1

bd
0,r




q∑

r1=d+1

1
b0,r1

r1∑

r2=d+1

1
b0,r2

. . .

rd−j′−1∑

rd−j′=d+1

1
b0,rd−j′




If we define {b′l0 , . . . , b′lu} as the set of unique blk from the whole set {bl0 , . . . , blq},
each associated with a degeneracy dk, we can write (A.13) in a more general form (dk = 0,
if b′lk is unique, dk = 1, if b′lk is singly degenerate, i.e. b′lk = blk1

= blk2
, etc.).

C
(j,q)
l0,l1,...lq

=
u∑

k=0

dk∑

j′=0

(
j + q

j′

)
b′j+q−j′
lk

(−1)dk−j′

∏u
r=0

r 6=k
(b′lk − b′lr)

dk(dr+1)

∏u
r=0

r 6=k
(b′lk − b′lr)

(dk+1)(dr+1)




q∑

r1=0

blr1
6=b′

lk

1
(b′lk − blr1

)

r1∑

r2=0

blr2
6=b′

lk

1
(b′lk − blr2

)
. . .

rdk−j′−1∑

rdk−j′=0

blrdk−j′
6=b′

lk

1
(b′lk − blrdk−j′

)




=
u∑

k=0

dk∑

j′=0

(
j + q

j′

)
b′j+q−j′
lk

D
(j′,q)
l0,l1,...lq

(A.19)

where

D
(j′,q)
l0,l1,...lq

= (−1)dk−j′
u∏

r=0

r 6=k

1
(b′lk − b′lr)

(dr+1)




q∑

r1=0

blr1
6=b′

lk

1
(b′lk − blr1

)

r1∑

r2=0

blr2
6=b′

lk

1
(b′lk − blr2

)
. . .

rdk−j′−1∑

rdk−j′=0

blrdk−j′
6=b′

lk

1
(b′lk − blrdk−j′

)

︸ ︷︷ ︸
dk−j′
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If dk = q, which means that bl0 = bl1 = . . . = blq = b′l0 , then D
(j′,q)
l0,l1,...lq

= δdk,j′ = δq,j′ .
This result can now be used in (A.4).

Sn,m = lim
p→∞

p∑

j=0

λj

j!


bj

nδn,m +
j∑

q=1

N∑

l1=1

N∑

l2=1

· · ·
N∑

lq−1=1

an,l1 · · · alq−1,m

u∑

k=0

dk∑

j′=0

(
j

j′

)
b′j−j′
lk

D
(j′,q)
l0,l1,...lq




= eλbnδn,m + lim
p→∞

p∑

q=1

N∑

l1=1

N∑

l2=1

· · ·
N∑

lq−1=1

an,l1 · · · alq−1,m

p∑

j=q

λj

j!

u∑

k=0

dk∑

j′=0

(
j

j′

)
b′j−j′
lk

D
(j′,q)
l0,l1,...lq

s=j−q
= eλbnδn,m +

∑

q≥1

N∑

l1=1

N∑

l2=1

· · ·
N∑

lq−1=1

an,l1 · · · alq−1,m

u∑

k=0

dk∑

j′=0

λj′

j′!
D

(j′,q)
l0,l1,...lq

lim
p→∞

p−q∑

s=0

λs+q−j′

(s + q − j′)!
b′s+q−j′
lk

= eλbnδn,m +
∑

q≥1

N∑

l1=1

N∑

l2=1

· · ·
N∑

lq−1=1

an,l1 · · · alq−1,m

u∑

k=0

dk∑

j′=0

λj′

j′!
D

(j′,q)
l0,l1,...lq


e

λb′lk −
q−j′−1∑

r=0

(λb′lk)r

r!


 (A.20)

For a finite maximum value of q this expression has a finite number of terms. For
the case that all blk = bn are equal, because of D

(j′,q)
l0,l1,...lq

= δq,j′ we get

Sn,m = eλbn


δn,m +

∑

q≥1

λq

q!

N∑

l1=1

N∑

l2=1

· · ·
N∑

lq−1=1

an,l1 · · · alq−1,m


 (A.21)

If Bn,m = bδn,m, i.e. a diagonal matrix with the same entry for every element along the
diagonal, the exponential term is independent of the combination of l1 . . . lq−1 and we get

Sn,m = eλb
∞∑

i=0

λi

i!

(
Ai

)
n,m

⇒ S = eλBeλA

This is simply the result for two commuting matrices A and B, where eλ(B+A) = eλBeλA,
as one would expect, because A commutes with any diagonal matrix that has a constant
value along the diagonal.
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3. Convergence

The convergence of expression (A.20) strongly depends on the form of the matrices A

and B and the value of the parameter λ and must therefore be examined for the particular
application of interest. Since there exist many potential applications of the matrix potential
we will design a very abstract test case with a form similar to that of the solution to the
multiple scattering Schrödinger equation. We will choose N = 5, an,m = exp(−|n −m|) −
δn,m, bn = [n− (N + 1)/2]2, for n,m = 1, 2, . . . N , and λ = i.

A =




0 0.367 0.135 0.049 0.018
0.367 0 0.367 0.135 0.049
0.135 0.367 0 0.367 0.135
0.049 0.135 0.367 0 0.367
0.018 0.049 0.135 0.367 0




and

B =




4 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 4




We will compare the convergence properties of the moduli of

S(α) = exp(λ[αA + B]) (A.22)

calculated according to expression (A.20) with that calculated according to (A.3), which is
the fundamental expression defining the matrix exponential. The parameter α is used to
scale the matrices with respect to each other. Our figure of merit will be

χ(α, p) =
N∑

n=1

N∑

m=1

(
|S(exact)

n,m | − |S(approx)
n,m (α, p)|

)2
(A.23)

where p indicates the highest order term used in the expansions (A.3) and (A.20).
Figure 77 shows χ(α, p) vs. p, the order of expansion for the two expressions. Ex-

pression (A.20) converges always faster than (A.3), because we are performing the infinite
sum over all products of elements of B associated with a given product of elements of A, and
not only finite sized products of order ≤ p, as in expansion (A.3). If the largest elements of
A and B are comparable in size, as for the case α = 10, both expansions will converge at
almost equal rates. However, in the case where all the elements of A are smaller than those
of B, the much higher convergence rate becomes obvious.

4. Inversion of CBED Patterns

The S-matrix notation is a fundamental mathematical tool in quantum scattering
theory. For a review of inverse problems in quantum scattering the reader is referred to [178],
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Figure 77. Comparison of convergence of expressions (A.3) (dashed lines, filled and small
markers), and (A.20) (solid lines, open and large markers) with increasing number of terms
in the expansion for different values of α on a logarithmic scale. For α = 10 the largest
elements in αA and B are comparable in size, producing very similar convergence behavior.
If the elements of αA are small compared to those in B, expansion (A.20) converges much
faster.
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where its theory, application and inverse problems are discussed in detail. In high energy
electron scattering the condition that large elements of B are larger than those of A is usually
satisfied, making this problem a practical application of this expansion [39,177,179].

Based on the Bloch wave solution to the multiple scattering Schrödinger equation of
high energy scattering of electrons by the crystal potential [36,180] the intensity of any point
in an electron diffraction pattern defined by the reciprocal lattice vector ~gn of the particular
diffraction spot and the tangential component of the incident electron wavevector ~kt is given
by the modulus squared of the element of the scattering matrix S(~kt) in the nth row and
the column m of the G(~kt) matrix that contains the kinetic energy term for the ~gm = 0
(”central beam”) reciprocal lattice vector.

|S(~kt)n,m|2 = [eiT (A+G(~kt)) · e−iT (A∗+G(~kt))]n,m (A.24)

where A is a square matrix with the potential energy terms An,m = U~gn−~gm as its off-
diagonal elements and zeros along its diagonal, G is a diagonal matrix with (relativistically
corrected) terms Gn,n = ξn = −(|~gn|2 + ~gn · ~kt)/γ related to the kinetic energy part of the
Schrödinger equation along its diagonal, and T = πγλt, where λ is the incident electron
wavelength corrected by the mean potential U0 of the crystal, t the thickness of the sample,
and γ the relativistic correction factor (see table 1 for definitions). Note that the electron
structure factors U~gn−~gm in A do not contain the usual relativistic correction factor γ, which
has instead been included included in T and G instead, in order to separate true material
constants (U~g) from variable experimental parameters (λ(v), γ(v), t,~kt). We also ommit
the additive constants U0 and |kt|2 for every element along the diagonal of G, because it
only produces a general attenuation of the diffraction pattern due to the imaginary part
of U0 and a phase factor due to the real part of U0 and |kt|2, which is immeasurable
in a conventional diffraction CBED experiment with non-overlapping discs. The crystal
potential V (~r) = V r(~r)+iV i(~r) consists of a real part describing the elastic scattering and an
imaginary part accounting for inelastic scattering processes which produce a non-isotropic
attenuation in the scattered signal, if one collects the zero-loss scattered electrons only, as
is routinely done in today’s quantitative (energy filtered) electron diffraction experiments.
This means that even for centro-symmetric crystals the U~g are in general complex. For the
symmetric 5-beam case with refelctions ~g1, ~g2, ~g3 = 0, −~g1, and −~g2 the A-matrix looks as
follows:

A =




0 U−~g1+~g2
U~g2

U~g1+~g2
U2~g2

U~g1−~g2
0 U~g1

U2~g1
U~g1+~g2

U−~g2
U−~g1

0 U~g1
U~g2

U−~g1−~g2
U−2~g1

U−~g1
0 U−~g1+~g2

U−2~g2
U−~g1−~g2

U−~g2
U~g1−~g2

0
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and

G(~kt) =




−|~g2|2 − ~g2 · ~kt 0 0 0 0
0 −|~g1|2 − ~g1 · ~kt 0 0 0
0 0 0 0 0
0 0 0 −|~g1|2 + ~g1 · ~kt 0
0 0 0 0 −|~g2|2 + ~g2 · ~kt




Using the expansion for the matrix exponential shown in the previous sections the
scattering matrix S can be expanded in a Born series-like expansion as

Sn,m = eTξnδn,m +
∞∑

q=1

N∑

l1,l2,...lq−1=0

U~gn−~gl1
U~gl1

−~gl2
· · ·U~glq−1

−~gm︸ ︷︷ ︸
q

Cq
n,l1,...lq−1,m (A.25)

where

Cq
n,l1,...lq−1,m =

u∑

k=0

dk∑

j=0

(iT )j

j!
D

(j,k,q)
n,l1,...lq−1,m


e

iT ξ′lk −
q−j−1∑

s=0

(iT ξ′lk)s

s!


 (A.26)

D
(j,k,q)
l0,l1,...lq

= (−1)dk−j
u∏

r=0

r 6=k

1
(ξ′lk − ξ′lr)

(dr+1)

q∑

r1=0

ξlr1
6=ξ′

lk

1
(ξ′lk − ξlr1

)

r1∑

r2=0

ξlr2
6=ξ′

lk

1
(ξ′lk − ξlr2

)
. . .

rdk−j−1∑

rdk−j=0

ξlrdk−j
6=ξ′

lk

1
(ξ′lk − ξlrdk−j

)

︸ ︷︷ ︸
dk−j

where {ξ′l0 , . . . ξ′lu} is the subset of u+1 unique elements of the set Q = {ξn, ξl1 , . . . . . . ξm} of
elements of G(~kt) present in that particular Cq

n,l1,...lq−1,m coefficient and dk is the degeneracy
of each one of them. Again, we used the notation l0 = n and lq = m. For non-degenerate ξlk

this result is equivalent to the one obtained by Cowley and Moodie [39] in 1957. Fujiwara
[179] also gives expressions for the degenerate case, but only for q ≤ 3. However, in order
to approximate the diffraction intensity of CBED patterns with any desired accuracy, being
able to calculate higher order terms with any degeneracy is essential. Since ξm = 0 the first
few Cq-coefficients are

C1
n,m =

{
eiTξn−1

ξn
for ξn 6= 0

iT for ξn = 0

C2
n,l,m =





eiTξn−1
ξn(ξn−ξl)

+ eiTξl−1
ξl(ξl−ξn) for ξn 6= ξl and ξn, ξl 6= 0

eiT ξn

(
iT
ξn
− 1

ξ2
n

)
+ 1

ξ2
n

for ξn = ξl 6= 0
eiTξn−iT ξn−1

ξ2
n

for ξn 6= ξl = 0

−T 2

2 for ξn = ξl = 0
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From this it becomes obvious that there is only a single Cq
n...m-coefficient for q = 1,

while there are N − 2 such terms for q = 2 (coefficients with l = n and l = m are zero,
because An,n = 0). In general the number of terms in the expansion for a given order q and
matrix size N is

q−1∑

j=0

(−1)q−j−1(N − 1)j

However, the number of distinguishable terms is less, because this estimate does not consider
the fact that for example

Cq
n,l1,l2,m = Cq

n,l2,l1,m (A.27)

The convergence of the Born approximation (A.25) depends on the value of T = γλt

and the modulus of the largest structure factor. The thicker the specimen or the lower the
accelerating voltage, the more terms we need in the expansion. The Cq

n,l,...lq−1,m coefficients
depend on several variable experimental parameters, like thickness t, accelerating voltage
v, and ~kt. Measuring diffraction intensities for a set of different values of any of these
parameters will allow us to set up a set of linear equations and solve for the different products
of U~gl−~gl2

. For example, CBED patterns provide experimental data for a whole range of

2-dimensional ~kt-vectors, depending on the shape and size of the condensor aperture. This
is a direct, though approximate inversion of the multiple scattering equation, potentially
able to reconstruct the projected potential V (~r) of the scattering crystal and by application
of the inverse Bethe-Mott formula its charge density ρ(~r) with a resolution comparable to
that of the scattered electrons, which is just a few pm.

Since only the diffraction intensity can be measured directly, the modulus squared
of (A.25) has to be taken

|Sn,m|2 = δn,m +
∞∑

q=2

N∑

l,l2,...lq−2=1

q−1∑

p=1

U~gn−~gl
. . . U~glp−1

−~gmU∗
~gn−~glp

· · ·U∗
~glq−2

−~gm

Cp
n,l,...lp−1,m

(
Cq−p

n,lp,...lq−2,m

)∗
+

2Re




∞∑

q=1

N∑

l,l2,...lq−1=1

U~gn−~gl
U~gl−~gl2

· · ·U~glq−1
−~gmCq

n,l,...lq−1,m


 δn,m (A.28)

For ξn 6= ξm the first term in the expansion of |Sn,m|2 (with q = 2) is

∣∣∣S(2)
n,m

∣∣∣
2

=

∣∣∣∣∣U~gn−~gm

eiT ξn − 1
ξn

∣∣∣∣∣
2

=
∣∣U~gn

∣∣2 sin2(1
2πλtξn)

(ξn/2)2
,

which is the kinematic approximation for the scattering intensity. Higher order terms involve
products of different structure factors. For example, for ξn 6= 0 the next higher order term



133

in |Sn,m|2 is

|S(3)
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) 2
ξn(ξn − ξl)

sin(Tξl)− sin(Tξn)− sin(T [ξl − ξn])
ξl

(A.29)

The terms with l = n and l = m are zero, because we set U0 = 0. Here we assumed that
always ξl 6= ξn, if l 6= m, which is only the case for non-symmetric orientations, i.e. not
the zone-axis case. However, in the computational implementation the proper ”branch” in
expression (A.29) can be chosen, based on the numerical degeneracy of the ξl ∝ −|~gl|2−~gl·~kt,
so that this expansion works for any value of ~kt.

In order to use experimental CBED data for this inversion scheme, the proper ~kt-
vector has to be assigned to every pixel in the pattern, which is easily possible, if the
microscope and its recording system is properly calibrated. The intensity of every pixel in
this pattern can be descibed by (A.28), which, when split into real and imaginary part, as
done in expression (A.29), becomes a set of linear equations with the constant coefficients
cr =Re(U~gn−~gl1

. . . U~glp−1
U∗

~gn−~glp
. . . U∗

~glq−2
) and ci =Im(U~gn−~gl1

. . . U~glp−1
U∗

~gn−~glp
. . . U∗

~glq−2
).

The amplitude of this product of structure factors is then given by
√

c2
r + c2

i , and its phase
by atan(ci/cr). Dividing one such product of U~g’s by another can yield the complex values of
single structure factors, e.g. U~g1

= (U~g1
U~g2

U∗
~g3

)/(U~g2
U∗

~g3
), however, when implementing this

method, it turns out that only products of structure factors with unit cell origin independent
phases can be determined by this method. In order to fix the origin of the unit cell, the
phases of certain structure factors must be defined ”by hand”. If the moduli of the structure
factors are already known (e.g. by proper normalization of kinematic diffraction patterns
of very thin specimen), the linear equations can also be set up to solve for the structure
factor phase-invariants only. The fact that the moduli of pure phase factors are 1 can then
be used as an additional, though non-linear constraint.
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The maximum value of q in (A.28) depends on the accuracy, with which the data
shall be fitted, and the sample thickness, accelerating voltage, and scattering strength of
the material. Once a set of U~g is determined, the scattering matrix S(~kt) can be calculated
exactly, using the full matrix exponential (A.24). A comparison of the exact calculation
with the experimental data shows, whether the maximum value of q must be increased.
Once a close enough estimate of the U~g’s has been found, their values can be refined using
expression (A.24) and standard methods for solving non-linear equations.

Although expression (A.25) converges faster than the standard expansion (A.3) for
the matrix exponential, even for reasonably thin specimen many terms in the expansion
are needed. Since the intensity distribution across a single CBED disc at low thickness
varies only slightly, an increase in range for ~kt is desireable. The angular range for conven-
tional CBED patterns is limited by the size of the unit cell of the crystal being examined
(4 . . . 7mrad for most structures at 200kV), and can be insufficient. In section 2.2 the
”Tanaka”-method, or large-angle CBED (LACBED) method has been reviewed, which al-
lows any diffraction disc to be recorded individually with an angular range in ~kt up to
80mrad, or even more, as far as the microscope geometry allows. While the system of linear
equations produced by expression (A.28) may be singular for the limited range in ~kt of
conventional CBED patterns, the additional range in ~kt parameter space removes at least
some of those (numerical) degeneracies in the linear equations.

5. Conclusion and Future Work

A new expansion for the matrix exponential of two non-commuting matrices, one
of which is diagonal, has been derived. Many problems involving the solution of the time-
dependent or time independent Schrödinger equation can be expressed in the form of such
matrix exponentials by writing the potential and kinetic energy terms in separate matrices.
It has been shown how this expansion can be applied to the multiple scattering inversion
problem by expanding the set of non-linear equations with a finite system of linear equa-
tions which can be solved by matrix inversion or other standard linear equation solvers.
In particular, the inversion from 2-dimensional rocking curves, which can be recorded as
(LA)CBED patterns with a single exposure in most TEMs to the projected crystal potential
has been discussed.

An experimental computer program has been written in order to test the suitability
of this expansion for the solution of the multiple scattering inversion problem, providing
very promising first results. More work will need to be done in exploring the analytic
properties of this expansion, making its numerical implementation more efficient.
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A new diffraction-channelling effect has been discovered, in which Kikuchi or chan-
nelling line-patterns formed by high energy electrons, neutrons and positrons are shown to
break up into a series of annular disks if the crystal thickness traversed by the beam is
small. The disks may be interpreted as Gabor in-line holograms of strings of atoms pro-
jected along the beam path. For electrons or positrons the patterns may be detected with
little background by detecting characteristic X-ray emission from a thin film as a function
of the diffraction conditions of a collimated, ionizing, high energy beam. Uses of the effect
for structure determination and atomic-resolution lensless imaging are suggested, and ex-
perimental conditions discussed. The content of this chapter has been published by John
Spence and Christoph Koch in Physical Review Letters 86 (24), p. 5510 (2001).

A considerable scientific payoff could be expected from the development of a general
method of obtaining near-field images from the intensity of scattered radiation. By avoiding
the aberrations and resolution limits introduced by lenses, and by allowing imaging with
radiations for which no lenses exist, such a method could be expected to contribute greatly
to our understanding of phenomena as diverse as protein folding, nano and mesoporous
structure analysis, catalysis and nucleation and growth processes in surface science. The
use of new radiations, such as coherent atom beams and neutrons, for imaging [181] may
then open up new possibilities for minimizing radiation damage to biomolecules [182]. The
associated inversion problem from scattering to image was therefore attacked by many of the
leading scientists of the last century, from Rutherford and Gabor to those who solved the
phase problem of X-ray crystallography by direct and other methods. Recently a variety of
schemes which allow a holographic interpretation of fluorescent X-rays (or photoelectrons)
have appeared [183]. These depend on the use of atoms in similar local environments as
internal ”point” emitters (or detectors) of radiation, each producing identical in-line holo-
grams of the local environment on a distant detector [184, 185]. Translational symmetry
between source or detector atoms is not required. These schemes may be classified according
to the type of radiation and beam energy used, which determine the elastic and inelastic
scattering lengths and hence the surface or bulk sensitivity. Interpretation is simplified,
and intensity maximized, if either the incident or emitted radiation is non-diffracting - this
may be achieved using a large illumination/detector angle, a wide range of energies, or a
layer of material thinner than the elastic scattering length. The possibilities may be writ-
ten, eg (γ, e), with incident particle first and diffracting particle underlined. Application
of reciprocity to the diffracting channel reverses the order of symbols and underline. Of
the resulting eighteen possibilities (including neutrons), several remain untried, while the
background of non-diffracting processes and kinematic constraints otherwise limit possibil-
ities. In related techniques such as Holographic LEED [186] and the Heavy Atom Method
of X-ray crystallography, there is negligible energy change on scattering. Twin images (see
DeVelis et al. [187] for the first solution to this problem) and multiple scattering are min-
imized by integration over beam energy [183, 185], however, for electrons, variations in the
phase of the reference wave with angle, and forward-focussing may introduce artifacts (but
see [188]). X-ray methods do not suffer from these difficulties, but scatter weakly, however
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the (γ, γ) (IXFH) method, using a pink beam, greatly reduces recording time. The rele-
vant history of ideas includes the Borrman effect, [189] and the structural information it
contains [190] in addition to the theory of Kossel and Kikuchi lines [191]. Gabor’s in-line
holography is also relevant, however it was intended for systems without symmetry. The
first observation of the dependance of fluorescence on diffraction conditions may be that of
Knowles [192], using diffracting neutrons (n,γ). Holographic reconstruction from internal
sources was demonstrated with gas diffraction by Bartell [193]. Atomic resolution has re-
cently been achieved using external-source, off-axis electron holography [194], in fulfillment
of Gabor’s original aim, to correct the aberrations of an electron microscope holographically.

The purpose of this letter is to describe a new (e, γ) holographic diffraction method
which uses high energy (300 kV) electrons traversing a thin crystalline slab to produce lens-
less, three-dimensional imaging of the internal atomic structure of the film. Characteristic
X-rays are detected as a function of the angle of a coherent electron beam, which excites
the X-rays and is weakly refracted by atomic strings in the crystal. The X-rays are not
diffracted due to the small film thickness.

Figure 78a) shows our geometry. A thin crystal, about 10 nm thick, is used, as for
atomic-resolution TEM . A high energy (e.g. 300 keV) collimated electron beam traverses
the crystal slab, exciting X-ray fluorescence from the Cl atoms of the bcc CsCl structure
shown. The thickness is less than an extinction distance for Bragg scattering, so that
electron standing waves do not build up inside the crystal to modulate fluorescence, as in
the ”Alchemi” technique used to locate foreign atoms in thin crystals [195]. The X-ray
intensity emitted by atom D is proportional to the intensity ID of the diffracted electron
intensity at D due to the external source S1 [196], if localization effects are negligible
(X-ray energies above about 500 eV [197]). Applying reciprocity to this arrangement, we
see in figure 78b) that ID equals the intensity at infinity from a point-source of 300 kV
electrons within the sample at D. This intensity variation with angle is an in-line hologram
of atom C as formed by a point source at D with ”defocus” (source to sample distance)
DC, shown in figure 78a). There is one hologram for every atomic column or string along
the optical path between source and detector. Every string parallel to the one shown (eg
at E in figure 78a)) generates an identical hologram, whose intensity distributions must be
added together, since the X-ray ”detection” process is incoherent. For sufficiently thin films
the individual holograms from non-parallel atomic columns are spatially separated on the
detector, since the angles between strings are relatively large. Where a mixture of species
occurs along such a path, a sum must be taken over all the reciprocal ”sources” in figure
78b) defined by the X-ray energy, and over the atoms imaged along the path. Unlike low
energy electron holography, the electron scattering process is highly forward-peaked, with
a strong concentration of energy along atomic strings. For thicknesses t small enough to
avoid overlap of holograms, the atoms on a string act as phase objects, and the contrast
at the detector arises from the ”out-of-focus” propagation over the distance ∆z = DC.
This distance creates contrast in the image of the phase-object atom at C, which appears
as a variation in X-ray emission with angle. For thicker samples, progressing from two-
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Figure 78. Atomic-string holography at high electron energies. a) Incident beam running
along atomic columns excites fluorescence, whose total yield is mapped above as a function
of incident beam direction. Atomic columns corresponding to spots in the pattern can
easily be identified. b) Time-reversed point source of high energy electrons produces similar
pattern. Inset shows CsCl bcc structure
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dimensional to three-dimensional diffraction and associated momentum conservation laws,
the holograms overlap and eventually form a Kikuchi pattern. In thin samples the method
generates the holograms of atomic strings which would be produced by a 300 kV internal
point-source of electrons, on a distant detector. This energy is sufficiently high to ensure
that there are no multiple scattering artifacts. The wide angular range of illumination
directions possible under computer control in TEM provides projections from many angles,
overcoming the limitation of off-axis electron holography to two-dimensional reconstruction
[194]. Because HEED is strongly forward-scattered, reconstruction from a single hologram
cannot distinguish different planes along the beam path, as in the Barton algorithm, due
to the rapid fall-off in angle for HEED scattering factors.

Figure 79. Diagram explaining the interpretation of atomic string holograms. Left: Multiple
scattering produced by point sources of 1MeV electrons on Cl atoms in a thin film of CsCl
(7 monolayers thick). Each blob in the figure lies over an atomic position in the perspective
diagram of the crystal structure shown at right. The source atom lies above the plane of
the paper and is not shown

To test these ideas we have performed detailed multiple-scattering calculations for
1MeV electrons traversing a thin crystal of CsCl . The Cl X-ray fluorescence which re-
sults is taken to be proportional to the intensity of the electron beam wavefield on the Cl
site (all such sites are equivalent). For computational convenience, we use the reciprocal
arrangement, and launch a spherical wave within the crystal from one Cl atom. A relativis-
tically corrected one-electron Schroedinger equation is solved for the propagation of this
wave through the crystal, using the multislice superlattice method [198]. The scattering
potential is synthesized from relativistic Hartree-Fock calculations for atoms, and all orders
of multiple scattering are included, with Debye-Waller factors for room temperature. Figure
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79 shows the resulting elastic scattering for 1MeV electrons on a screen at infinity, plotted
as a function of angle, and a model of the CsCl crystal as seen by the source atom (atom
C in figure 78), which is at the center of the image, above the plane of the page. The
intensity in the hologram is proportional to the total Cl characteristic X-ray emission, as
a function of the incident beam direction. We note that the number of atomic holograms
along each radial line is just equal to the number of atoms seen in perspective. The fig-
ure confirms that separate holograms are obtained for every atomic string, in the form of
a central maximum surrounded by a Fresnel fringe. These holograms are seen to fall in
one-to-one angular correspondance with rays drawn along the prominent atomic columns
or strings in the structure from the source atom, as shown in figure 78.

A simple interpretation of these holograms is possible if the approximation is made
that the potential is zero between the emitter atom and the imaged atom. Then, for atoms
spaced by ∆z along the string, each atomic string hologram can be shown to be identical
(apart from magnification) to that which would be produced on a screen placed a distance
∆z beyond an atom illuminated by a plane-wave [198]. (This follows from the equivalence
of the point-projection and plane-wave geometries). In this sense the hologram is an image,
out-of-focus by ∆z. Hence these holograms have the form

I(r) = |q(r) ∗ ∗t(r)|2

where q(r) = exp(−iσφp(r)), φp(r) =
∫

φ(r)dz and t(r) = exp(−iπr2/(∆z · λ)) is the free-
space propagator or Green’s function. The ∗∗ denotes convolution, φ(r) is the electrostatic
or Coulomb potential for the atom, and σ = π/λV is the interaction constant for an electron
beam of energy eV. The integral is taken antiparallel to the beam path from an origin on
the X-ray emitting atom. Since these are not Fraunhoffer holograms (∆z < d2/λ, d the
diameter of the atom [187]), reconstruction of the holograms would encounter a twin image
problem, which is soluble in principle by varying the energy of the beam over a range which
changes the Fresnel number N = r2/(∆z · λ · 2) by 0.5. In practice, the direct resemblance
of the patterns to a projection of the real-space crystal structure from an atom identified by
its characteristic radiation will be sufficient to solve it. From thicker regions, conventional
electron diffraction methods can be used to determine the periodicity along the atomic
strings, using high-order Laue zone lines, the space group, and lattice spacings [198].

Since the spatial resolution of these images greatly exceeds that of current TEM
imaging techniques, their sensitivity to atomic number and ionic state is of interest. Con-
sistent with the first-order expansion of q(r), we find that neighbors in the atomic table
can be distinguished in the absence of background, and that, for example, the intensity at
the center of Cs (55) is three times that at the center of the Cl (17) hologram. Br (35) is
about twice Cl. This axial intensity is the most sensitive point to the charge state of the
ions, since it involves forward electron scattering, which tends to infinity for an unscreened
isolated ion [198].

Figure 80 shows how the contrast of the string holograms is inverted for positrons as
incident particles and how the patterns vary with increasing thickness, first to a projection
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Figure 80. a) 1MeV positron hologram. b)-d) 1MeV electron holograms for samples of
different thicknesses. The displayed intensity is the sum of holograms due to sources at
every depth up to the sample thickness. In b) the different holograms of Cs and Cl atoms
are indicated by white and black circles respectively (compare with figure 79 for position of
all the holograms.
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of the structure at moderate thickness, and finally to the familiar Kikuchi patterns at
large thickness, due to localised phonon (quasi-elastic) scattering. The transition to a
spotty pattern at small thickness was evidently overlooked by the discoverers of Kikuchi
and Kossel patterns, which result from three-dimensional diffraction satisfying Bragg’s law
on the surfaces of cones [191]. In figure 80, however, both radial and non-radial K-lines
remain. Radial lines are seen in channelling star patterns at much higher energies, due to a
lack of angular resolution, but are not seen in the high angular resolution patterns obtained
at sub MeV energies. Evidently the forward focussing effect, which produces the radial
lines, becomes ineffective for longer strings, as the focussing distance gets out of step with
the interatomic spacing [199]. These atomic focusing effects have also been observed at high
energy [200]. Thus an atom in the path of a kilovolt electron beam acts as a lens, with
a focal length of a few nm, depending on accelerating voltage. Hence special accelerating
voltages may be chosen to enhance the intensity or vary the magnification of the string
holograms.

The spatial resolution of the method depends on several factors, including the vi-
brational amplitude of the source atom ∆r, the inelastic localisation L ∼ λ/ΘE [78, 201],
and the divergence of the electron beam (which limits intensity). Here ΘE is the mean
inelastic scattering angle, and L is a quantum equivalent of an impact parameter. Since no
static displacement is possible between source and imaged atom (as in FIM), mechanical
vibration does not limit resolution, as in other atomic-resolution microscopies. For X-ray
energies greater than 1 kV, L < 0.1 Angstrom. By reciprocity, the effect of a finite electron
beam divergence ∆θ is to smear out detail in the hologram over this angular range. Typ-
ical divergences of milliradians are very much smaller than the width of the inner Fresnel
fringes. The resolution in the final reconstruction is about equal to the width of the finest
Fresnel fringe observed. The angular smearing due to thermal vibration is ∆r/2∆z ≈ 2.5
mRad at room temperature, which sets an upper limit on beam divergence and hence ex-
posure time for hard X-rays. Cooling thus increases resolution only if divergence is reduced
commensurately, and exposure time increased.

Experimental observation of atomic string holograms requires the same TEM appa-
ratus used for ”Alchemi”, but thinner crystals. Using a 200nm diam. electron beam (LaB6
source), with ∆θ = 1.8 mRad, in samples 200 nm thick, Rossouw et al [202] collected sta-
tistically significant standing-wave fluorescence (Alchemi) data on a 79 X 58 pixel array in
2 hrs. (0.3 sterad X-ray detector, 30 mm2). For the 10nm thick films required for string
holography, this time becomes 5 hrs using four of the new 60mm2 detectors, or 13 mins for
one hologram. Current TEM/STEM instruments are not optimized for these experiments
and allow many improvements.

In summary, we have discovered a new channelling effect for very thin crystals, over-
looked within previous theories of Kikuchi lines. The patterns, interpreted as holograms,
solve the multiple scattering problems of earlier methods, while ensuring adequate signal,
and providing true three-dimensional information. For bulk samples, the possibility arises
of applying this method to a beam whose energy is chosen slightly above the X-ray ion-
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ization threshold, thereby limiting the information depth to the inelastic mean free path.
This requires the use of a localised excitation with short (< 10nm) inelastic mean free path.
The coherent probe formed over very large angles by an aberration-corrected STEM may
also be expected to form these patterns. A two-dimensional array of orientationally ordered
organic molecules [203] containing a single fluorescing species, or a semiconductor overlayer
would also produce string holograms. Similar string holograms can be expected from inco-
herent neutron Kikuchi patterns [181,204] in thin samples, since the scattering is isotropic.
Radiation damage effects on biological samples can then be small [182].

Thanks to J.M.Cowley and M. van Hove for discussions. Supported by NSF award
DMR9814055.



APPENDIX C

GENERATING DISSOCIATED DISLOCATIONS



145

This chapter contains a copy of the letter written by João Francisco Justo Filho
at the Instituto de Fisica da Universidade de São Paulo, Brazil, describing the method
he used to generate the dislocation model used for image simulations in chapter 5. The
reference and image numbers have been adjusted to fit in with the rest of this document.

Dear Christoph,

Here I am sending you a first description of my calculations. I have already gener-
ated a few configurations. It was a little trick to get the dissociated dislocation, but I have
full control over the configurations. Now we should discuss the number of atoms and the
number of layers in the dislocation line so that your simulations are not too expensive.

Methodology: Let’s consider a configuration which I usually generate. Since dis-
locations in silicon belong to the {111} glide planes, in the 〈110〉 directions, my simulation
cells should take advantage of this. The simulations were performed using periodically repli-
cated super-cells, as shown in figure 81, with X, Y , and Z axes respectively parallel to the
[112̄], [111], and [1̄10] directions of the zinc-blende lattice. After generating the configura-
tion, I relax the atomic positions using a conjugated gradient (CG) algorithm based on an
interatomic potential.

I use periodic boundary conditions in my calculations to simulate an infinite crys-
talline system. Therefore, my simulation cells must have a dislocation dipole. For example,
when studying a 30◦ partial dislocation, we must generate a 30◦ and a -30◦ partial with
a stacking fault between them (as shown in figure 81). To study a 60◦ dislocation the
simulation is a little more complicated.

I generated a dipole of two 60◦ dislocations, and then split one of them into a 30◦

plus a 90◦ partial, with a (40 Å) stacking fault between the partials. I first generated a 60◦

dislocation dipole, as shown in figure 82. This was the tricky part. Before dissociating one of
the 60◦ dislocations, I relaxed the system (fig. 82) with my conjugated gradient algorithm.
Then, I dissociated one of the dislocations (fig. 83), and relaxed the system again with that
CG algorithm. This multiple-step procedure was really necessary, otherwise the system
would relax to some ẅeirdc̈onfiguration. This dissociated dislocation has a stacking fault
40 Åwide, as you requested. Then, to perform your simulations I guess we should take
only one part of the simulation cell, and remove the 60◦ undissociated dislocation (see the
dashed line in the figure 84).

Now some details of my calculations:
I used a conjugated gradient minimization code to relax the system to an equilibrium

configurations. The minimization is based on an interatomic potential which I have recently
worked on. This interatomic potential is called EDIP [158, 205], and it has been shown to
give a better description of dislocation core properties as compared to either Tersoff or
Stillinger-Weber potentials.

The minimization is also performed in the parameters of the simulation cell [206].
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This means that the lattice vectors are also allowed to in order to remove the stress generated
by the dislocations. Therefore, the relaxed simulation cell is not orthorhombic anymore, it
deforms a little to remove the internal stress, and the final cell is triclinic. I mention that
because if you decide to replicate the cell in the dislocation direction (here in Z direction),
then you should be careful with this detail. The relaxed vectors which define the lattice are
not orthogonal.

The simulation cell has the following dimensions:
I generated configurations with 8 b in the dislocation line direction (Z direction),

where b = 3.84Å.
∗DX ≈ 80Å, [112̄] (the partial dislocations are 40 Åapart in the X direction)
(and the partial dislocations are at least 40 Åapart from the other undissociated 60◦ dislo-
cation, in the X direction)
∗DY ≈ 28Å[111] There are 18 planes in the [111] direction.
∗DZ ≈ 31Å, 8b, [1̄10] (you mentioned that you would prefer a narrow cell and then you
would just replicate that. As I mentioned earlier, you should be careful here).

I generated two dissociated configurations (30◦ + 90◦ ): for the 90◦ in a single period
and double period reconstructions. (see figures 85 and 86, respectively). We can look to
configuration in the Y plane in fig. 87, (1̄10) plane.

I will not send you the configurations just yet. I want your feedback first, so that I
can send you exactly the configurations you want. Now that I overcame all the problems,
I can generate those configurations in less than a day. Please let me know if you need any
additional information concerning my simulations.

Best regards.
João Justo.
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Figure 81. Simulation cell used in the simulations. The shadowed region represents the
stacking fault resulting from the introduction of a dipole of partial dislocations.

Figure 82. A dipole with two 60◦ dislocations.
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Figure 83. Simulation cell with one of the 60 degree dislocations dissociated into a 30 degree
plus a 90 degree partial.

Figure 84. Whole simulation cell showing the part that can be removed (left of the dashed
line) which has an undissociated 60◦ dislocation.
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Figure 85. The {111} glide plane where the dislocations belong. Here (a) represents the
core of the undissociated 60◦ dislocation, which we do not need to bother. (b) is the core of
the 90◦ partial, and (c) is the core of the 30◦ partial. The 90◦ partial is in its single-period
core reconstruction.
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Figure 86. Double-period core reconstruction for the 90 degree partial.
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Figure 87. The (1̄10) plane, or Y plane. It is the same configuration as in figure 85. Here
(a) represents the core of the undissociated 60◦ dislocation. (b) is the core of the 90◦ partial,
and (c) is the core of the 30◦ partial.
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[75] G. Möbus, T. Gemming, and P. Gumbsch, Acta Cryst. A 54, 83 (1998).

[76] D. A. Muller, B. Edwards, E. J.Kirkland, and J. Silcox, Ultramicr. 86, 371 (2001).

[77] M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University
Press, London, 1954).

[78] A. Howie, Journal of Microscopy 117, 11 (1979).

[79] P. D. Nellist and S. J. Pennycook, Advances in Imaging and Electron Physics 113,
147 (2000).

[80] J. M. Cowley, Ultramicr. 2, 3 (1976).

[81] J. C. H. Spence and J. M. Cowley, Optik 50, 129 (1978).

[82] D. E. Jesson and S. J. Pennycook, Proc. Roy. Soc. London A 441, 261 (1993).

[83] C. Koch and J. M. Zuo, in Microsc. Microanal. 7, Suppl. 2: Proceedings, MSA
(Springer New York, 2000), p. 126.

[84] J. M. Cowley, Diffraction Physics (North Holland, Amsterdam, 1975), 2nd ed.

[85] URL http://www.fftw.org.

[86] F. Seitz, Phys. Rev. 88, 722 (1952).



157

[87] R. Jones, Mat. Sci. Eng. B 71 (2000).
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