

Inline and hybrid electron holography for mapping charges, potentials, and strain

Outline

- Introduction: What is inline holography?
- Applications: HRTEM Aberration compensation & Strain Mapping
- Recovering low spatial frequencies by
 - Hybrid holography
 - Gradient-flipping inline holography
- Introducing the full-resolution wave reconstruction (FRWR) code
- Data Acquisition at the TEM

The Phase Problem in Imaging

Holography in the TEM: a) Off-axis Electron Holography

Pioneered by Gottfried Möllenstedt in Tübingen sample vacuum Reference wave Electron charged wire biprism Hologram intensity Interference pattern (phase shift reconstructed by linear algebra methods)

Holography in the TEM: b) Inline Electron Holography

Variations in projected mass thickness => Fresnel fringes

How Inline Holography Works in the TEM

Outline

- Introduction: What is inline holography?
- Applications: HRTEM Aberration compensation & Strain Mapping
- Recovering low spatial frequencies by
 - o Hybrid holography
 - Gradient-flipping inline holography
- Introducing the full-resolution wave reconstruction (FRWR) code
- Data Acquisition at the TEM

Iterative Focal Series Reconstruction in HRTEM

21 images ∆f=-605 .. -679nm

Data: M. Pelsozy, F. Ernst, T. Zawodzinski (Case Western Reserve University) Gold particle on thin amorphous Ge film

Atomic-Resolution Inline Electron Holography

Phase

Amplitude

Phase and amplitude reconstructed using FRWR from focal series of a Gold particle on a thin Carbon film.

Same Data – Different Algorithms

Phase of reconstructed exit-face wave function

Grain Boundary in SrTiO₃

Complex electron wave function reconstructed from inline holograms using the FRWR Algorithm¹

(experimental data provided by K. Dudeck, Oxford)

Amplitude

¹ C.T. Koch, Ultramicroscopy 108, 141-150 (2008)

OLDT

Objective aperture

 $\Delta f < 0$

 $\Delta f = 0$

 $\Delta f > 0$

Spatial resolution: \approx 1 nm

C.T. Koch, International Journal of Materials Research 2010/01 (2010) 43-49

Space charge @ Σ 3(112) GB in SrTiO₃

E = 200 kV, t = 170 nm, ε_{STO} = 230 (probably closer to 100 because of high E-field)

Imaging Magnetic Fields by Inline Electron Holography

Lorentz focal series of a lithographically patterned magnetic structure

Image size: 1.2 x 1.2 µm² Data: S. McVitie (Glasgow) Magn. Field (horizontal components)

Reconstruction using FRWR software

Reconstruction of Inline Holograms

Reconstruction from 1 in-focus and 1 out-of-focus image by an iterative (non-linear) reconstruction algorithm

BF and DF off-axis Electron Holography

K.-J.Hanszen, J. Phys. D: Appl. Phys. 19 (1986) 373-395

OF DT-UNIL HSITAN MDH--UREDLIN

ot DT-4 Z **Bright-Field Inline Electron Holography** P Incident plane wave Sample Objective aperture ∆f₁ Δf_2^+ Δf_3^-

U

Dark-Field Inline Electron Holography (DIH)

Dark-field Inline Holography (DIH)

C.T. Koch, V.B. Özdöl, P.A. van Aken, APL 96, (20010) 091901

DIH of 45nm CMOS transistor structure

Source

Drain

Y

Microscope: JEOL ARM 1250

Quantitative DIH of 45nm CMOS transistor structure

40

0

80

y-position (nm)

160

120

C. T. Koch et al, APL 96 (2010) 091901

B. Özdöl, D. Tyutyunnikov, C.T. Koch, and P.A. van Aken,, Cryst. Res. Technol. 49 (2014) 38-42

InGaN MQWs in efficient green LEDs

HRTEM Strain Mapping May Damage!

R. A. Oliver, M. J. Galtrey and C. J. Humphreys, Materials Science and Technology 24 (2008) 675

DF Inline Holography of GaN/InGaN

Focal series of (0002) DF images

Experiment only possible with energy filter, otherwise the Fresnel fringes will be drowned by diffuse inelastic scattering.

Reconstructed geometric phase

50 nm

Sampling:0.2 nmElectrons / pixel:32Resolution:1.04 nm

Reconstruction using FRWR¹ algorithm

¹ C.T. Koch, Ultramicroscopy **108**, 141-150 (2008)

20 nm

In mapping by Dark-field Inline Holography

GaN / InGaN multiple quantum wells: Zone axis: [1120]

V.B. Özdöl, C.T. Koch, P.A. van Aken, J. Appl. Phys **108** (2010) 056103

Mapping piezoelectric fields

Combining Dark-field and Bright-field Inline Electron Holography

Mapping of sheet charges which compensate polarization charge

Outline

- Introduction: What is inline holography?
- Applications: HRTEM Aberration compensation & Strain Mapping
- Recovering low spatial frequencies by
 - o Hybrid holography
 - o Gradient-flipping inline holography
- Introducing the full-resolution wave reconstruction (FRWR) code
- Data Acquisition at the TEM

Still Problems at Very Low Spatial Frequencies

(partly due to inelastic/incoherent scattering)

Inline holography

Off-axis holography

T. Latychevskaia, et al. Ultramicroscopy 110 (2010) 472–482

Oversampling in Off-axis Holography

The necessary oversampling reduces the counts per pixel and thus increases the noise and requires thus **long exposure times**.

C. Koch and A. Lubk Ultramicroscopy 110 (2010) 460-471

Synergy: Combining Off-axis and Inline Holography

Advantages:

- Low spatial frequencies through off-axis holography (even if data is very noisy)
- High spatial frequencies from inline holography (at least two times better resolution)
- C. Ozsoy Keskinbora et al. Scientific Reports 4 (2014) 7020

AWDH TO BERLIN.

Experimental results

C. Ozsoy Keskinbora et al. Scientific Reports 4 (2014) 7020

Verification by Simulation

Equal electron dose in all 3 cases!

C. Ozsoy Keskinbora et al. Scientific Reports 4 (2014) 7020
Outline

- Introduction: What is inline holography?
- Applications: HRTEM Aberration compensation & Strain Mapping
- Recovering low spatial frequencies by
 - o Hybrid holography
 - o Gradient-flipping inline holography
- Introducing the full-resolution wave reconstruction (FRWR) code
- Data Acquisition at the TEM

Dealing with low spatial frequencies

Conventional reconstruction algorithm Regularized reconstruction Both reconstructions are equally consistent with the focal series data

data: C. Ozsoy Keskinbora (MPI-Stuttgart) at FZ Jülich (R. Dunin-Borkowski & C. Boothroyd)

Very Low Frequencies in the Phase Unreliable by Inline Holography

data: C. Ozsoy Keskinbora (MPI-Stuttgart) at FZ Jülich (R. Dunin-Borkowski & C. Boothroyd)

Different reconstruction versions

Outline

- Introduction: What is inline holography?
- Applications: HRTEM Aberration compensation & Strain Mapping
- Recovering low spatial frequencies by
 - Hybrid holography
 - o Gradient-flipping inline holography
- Introducing the full-resolution wave reconstruction (FRWR) code
- Data Acquisition at the TEM

User Manual

Not fully up to date 😕, but still highly recommended

FRWR Workflow

Towards Full-Resolution Inline Holography (FRIH)

Features of the FRWR (full-resolution wave reconstruction) software:

- Non-linear defocus increments
- Fully automated acquisition in DM
- Setup of reconstruction in DM
- Compensation of distortions induced by changes in objective lens current
- Phase prediction applies a variant of the TIE with (I^{exp}-I^{sim})/df as input
- Flux-preserving model for partial spatial coherence
- Fitting of incoherent background (mimics incoherent scattering)
- Different regularization functions for ,improving' low spatial frequency phase info

The FRWRTools Plugin

Camera Microscope Spectrum FELS SI Volume FETEMSI IPU OFD	FRWRtools DIEPACK Custom Help
📅 FRWR Acquisition 📃 📼 💌	Acquire Foc. Series / EFTEM
Info Focal Series EFTEM Alignment	Manual Align
Number of defaci:	Auto Align
	FRWR Setup
Defocus step: 5.0 Defocus offset: 0.0	Read Image
Exposure time: 1.0 Settling time: 0.0	Write Image
Focus Calibr.: 1.0 Binning: 1	Flat field correction
· linear	Interpolate Image
I Remove Xrays I Align Images ○ sequential	Create Stack
I Image Shift I FFT Envelope (● alternating	Volume Tools
Start View Acquire Focal Series Reset Defocus Calibrate Defocus	Complex Image
Defense Open	FFT (real->complex)
Ange25 him 25 him	IFFT (complex->real)
III. Wobble Amplitude: 0.0 Angle: 0.0 Test	FFT (complex->complex)
Correct Rotation (µrad/mm): -1.44 Zoom (1+dz/mm): 0.8155; Apply	IFFT (complex->complex)
Image processing	Diffractogram
Xray threshold: 9.0 Low k_cutoff: 0.0 High k_cutoff: 0.3	Geometric Phase Analysis
Least squares T Exponent: 10 Nedge: 128.0	DIH-GPA
	Show Comparison

Free download: https://www.physik.hu-berlin.de/en/sem/software/software_frwrtools

The Acquisition Tool

Non-linear defocus increments: (n=1 [linear], 2 [quadratic], or 3 [cubic]) $\Delta f_n = \Delta f_{offset} + defStep \cdot sign(n-n_0) \cdot |n-n_0|^m$

Sequential acquisition:

- Aim is to have accurate defocus at small defocus values
- Sequential acquisition first jumps to lowest underfocus (if defstep > 0) => hysteresis!
- Alternating acquisition uses the following sequence:

 $df = 0, -1, +1, -2, +2, -3, +3, \dots$

Nonlinear defocus sampling

Towards Full-Resolution Inline Holography (FRIH)

Features of the FRWR (full-resolution wave reconstruction) software:

- Non-linear defocus increments
- Fully automated acquisition in DM
- Setup of reconstruction in DM
- Compensation of distortions induced by changes in objective lens current
- Phase prediction applies a variant of the TIE with (I^{exp}-I^{sim})/df as input
- Flux-preserving model for partial spatial coherence
- Fitting of incoherent background (mimics incoherent scattering)
- Different regularization functions for ,improving' low spatial frequency phase info

Setup Tool

B: ZnS_StackExp			🔀 🛗 D: FFT			
	ERWR Project Setup					
	Info Focal Series Project S	etup Reconstr	ruction			
	HighVoltage (kV):	200.0	Cs (mm) :	0.0		
	Number of defoci:	20 1	Defocus step:	7.0	01 00	
	Defocus offset:	0.0	Exposure time:	1.0	080	
	Astigmatism (nm):	0.0	An <mark>g</mark> le (deg):	0.0		
Te fair the states	Delta (nm):	10.0 a	alpha (mrad):	0.1		
	Obj. apert. (mrad):	44.7	Edge (fract.):	0.1		
	Offset X (mrad):	0.0	Offset Y (mrad):	0.0		
and the second second second	CTF-rings:	2 (CTF-points:	12		
Children articles	Show FFT 🔽 SI	how Envelopes	Non-linear Focus	1.0		
	< Slice	0 Defocus:	-70.0 nm	->		
)	Keep Params	Save Project			

Adjust defocus & Astigmatism at Underfocus

Adjust defocus & Astigmatism at Overfocus

Running the reconstruction

Open a command window, navigate to the folder where you want to store the results, and start the reconstruction using the command

frwr3 [projectName].cdf -c [controlFile]

👞 Eingabeaufforderung - frwr3 right.cdf	-c frwr3_controlfile.conf					
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx						
Time and date: Thu Mar 10 07	:48:51 2016					
Reconstruction parameters	0 600000 0					
Padding:	yes (0.5)					
Min. intensity level:	10.00					
Data normalized: Number of trial shifts:	no 1					
Maximum image shift: Fitting image rotation:	5 pixels					
Fitting image magnification:						
Fitting defocus:	yes (1)					
Fitting reference points: Maximum defocus:	no (after 7 images) 100000_0 nm	=				
fit incoherent background:	yes (beta = 0.10, damp = 0.90)					
Phase starting guess:	phase = 0					
Feedback parameter:	1.000	Ŧ				

Because of extensive hard disc access this reconstruction may run for quite some time, especially if distortion correction is turned on.

Reconstructions can always be interrupted (Ctrl + C) and resumed with the command

frwr3 [projectName].cdf -c [controlFile] -r

Towards Full-Resolution Inline Holography (FRIH)

AWDH. PORTA

Features of the FRWR (full-resolution wave reconstruction) software:

- Non-linear defocus increments
- Fully automated acquisition in DM
- Setup of reconstruction in DM
- Compensation of distortions induced by changes in objective lens current
- Phase prediction applies a variant of the TIE with (I^{exp}-I^{sim})/df as input
- Flux-preserving model for partial spatial coherence
- Fitting of incoherent background (mimics incoherent scattering)
- Different regularization functions for ,improving' low spatial frequency phase info

Distortions corrected

Raw experimental data

Low Spatial Frequencies: Compensate Distortions !

Simulated from wave

Distortions (amplified x5)

Image 3, Defocus ≠-12184 nm

Use simulated focal series for verifying the result

How to control distortion fitting

A few lines from the control file:

fit distortions fit rotation: fit magnificati			1 1 1	} (Furns distortion fitting on/off Controls fitting rotation and magnification separately (only if ,fit distortions' =1)			
<pre>zoomFactor_mm: rot_rad_mm: zoomX_mm: zoomY_mm: spiral_mm: pincush_mm:</pre>	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	% in % pe	rad r kp	per ixel	kpixel and	Starting parameters for distortions - microscope dependent - can be obtain from previous reconstructions
<pre>zoomFactor_mm range: 3 rot_rad_mm range: 2 zoomX_mm range: 0.1 zoomY_mm range: 0.1 spiral_kpix_mm range: 0.4 pincushion_kpix_mm range: 0.4</pre>							Range to vary - micro - alwa => sr	e over which you allow parameters / oscope dependent ys per mm of defocus mall defocus => small distortions

Reporting of Distortion Parameters: imgParams.log

OTDT-UNIL

p

Calibration=fitted def./requested def.	FRWR Acquisition Image: State of the sta
The fitted defocus step (can also be used for microscope calibration):	Defocus step: 5.0 Defocus offset: 0.0 Exposure time: 1.0 Settling time: 0.0 Focus Calibr.: 1.0 Binning: 1 Image Calibr.: 1.0 Binning: 1 Image Shift FET Envelope C sequential
defocus fit: 1628.79 1.99006 -1.76152 nm	Start View Acquire Focal Series Reset Defocus Calibrate Defocus <
The following section from imgParams.log can be	Correct Rotation (µrad/mm): -1.44 Zoom (1+dz/mm): 0.8155! Apply Image processing Xray threshold: 9.0 Low k_cutoff: 0.0 High k_cutoff: 0.3 Least squares Exponent: 1.0 Nedge: 128.0

zoomFactor_mm: -0.0949699 -1.20323 74.5796

```
rot_rad_mm: -0.0270412 2.646 222.616

zoomX_mm: 0 0 0

zoomY_mm: 0 0 0

spiral_mm: 0.0307718 -3.13081 -1244.92 % in rad per kpixel and mm

pincush_mm: -0.0859823 0.64515 -99.9325 % per kpixel and mm
```

Towards Full-Resolution Inline Holography (FRIH)

Features of the FRWR (full-resolution wave reconstruction) software:

- Non-linear defocus increments
- Fully automated acquisition in DM
- Setup of reconstruction in DM
- Compensation of distortions induced by changes in objective lens current
- Phase prediction applies a variant of the TIE with (I^{exp}-I^{sim})/df as input
- Flux-preserving model for partial spatial coherence
- Fitting of incoherent background (mimics incoherent scattering)
- Different regularization functions for ,improving' low spatial frequency phase info

Recovering Low Frequencies Despite Low Spatial Coherence

Electron beam energy: 200 kV (λ = 2.51 pm) Illumination convergence semi-angle: α = 0.05 mrad Dose: 34.2 electrons / Å²

Simulated focal series

C.T. Koch, Micron **63** (2014) 69–75

Applying the Transport of Intensity Equation

$$\frac{2\pi}{\lambda}\frac{\partial I(\vec{r},\,\Delta f)}{\partial\Delta f} = \nabla_{x,y}\cdot [I(\vec{r},\,\Delta f)\nabla_{x,y}\phi(\vec{r},\,\Delta f)]$$

Solving the TIE extrapolates to low spatial frequencies irrespective of spatial coherence

 \Rightarrow Compromise between low spatial frequency artefacts and resolution

Full-Resolution Inline Holography (FRIH)

C.T. Koch, Micron 63 (2014) 69-75 (open access)

DOI: <u>10.1016/j.micron.2013.10.009</u>

Applying FRIH to Experimental Data

Phase Prediction in Control File

enforce equal defocus steps: intermediate loops: 5 final loops: 50 residue loops: 0

0

% Settings for Phase Prediction: phase predict loops: 4 % applies TIE to residual phase predict threshold: 0.025 % keep only small phase update low intensity threshold: 5 % avoids dividing by zero in TIE padding: 0.25

Average chi2: 0.00171284	
Image 0: defocus: 0.0 nm, wave shift: (0,	Ø>
Image 1: defocus: -0.1 nm, wave shift: (0,	. Ø>
Image 2: defocus: -0.2 nm, wave shift: (0,	. 0>
Image 3: defocus: -0.3 nm, wave shift: (0,	. Ø>
Image 4: defocus: -0.4 nm, wave shift: (0,	. Ø>
Mean defocus step = -0.1nm	
Will read image 5	
6-Loop 0: align=1, R-value=0.0174959	
6-Loop 1: align=0, R-value=0.017343	
6-Loop 2: align=0, R-value=0.0172945	
6-Loop 3: align=1, R-value=0.017267	
6-Loop 4: align=0, R-value=0.0172463	
6-Loop 5: align=0, R-value=0.0172295 (P)	
6-Loop 6: align=0, R-value=0.0172472 (P)	
6-Loop 7: align=0, R-value=0.0172754 (P)	
6-Loop 8: align=0, R-value=0.0172974 (P)	
C.T. Koch, Micron 63 (2014) 69–75	

5 iterations with flux-preserving GS-like projections

50

4 iterations with phase predictions

e) FRIH100

Successive Increase of Defocus Range

frame	0	1	2	3	4	5	6		
defocus	-90	-40	-10	0	10	40	90		
				; /					
Control file		1. Find ut v	whether fram	he 4 or 2 cor	relates bette	r with frame	3		
init loops 2:	5	2. Reconstruct from only those two frames (e.g. 5 iterations)							
init loops 3:	6	⁶ 3 Try including a 3rd frame below or above (e.g. 6 iterations)							
		4. Initial reco		y rsing 3 imag	es only (3-lo	op)	- ,		
	l	5. Alignmen	t of images s	simulated for	$\Delta f = +40$ with	exp. data			
		_		γ	<i>i</i>				
	6	6. Reconstruc	ction using 5	images only	/ (5-loop)				
	7	 Alignment of 	of images sii	mulated for 2	∖f=±90 with €	exp. data			

This procedure allows images with very different contrast to be aligned in a fully **automated** fashion quite **reliably**

0.06

C.T. Koch, Micron 63 (2014) 69–75

Towards Full-Resolution Inline Holography (FRIH)

Features of the FRWR (full-resolution wave reconstruction) software:

- Non-linear defocus increments
- Fully automated acquisition in DM
- Setup of reconstruction in DM
- Compensation of distortions induced by changes in objective lens current
- Phase prediction applies a variant of the TIE with (I^{exp}-I^{sim})/df as input
- Flux-preserving model for partial spatial coherence
- Fitting of incoherent background (mimics incoherent scattering)
- Different regularization functions for ,improving' low spatial frequency phase info

Partial Coherence

Energy spread of source:

Reduced fringe contrast

Partial temporal coherence

∆E ≈ 0.8eV

Spatial: illumination semi-convergence α

Temporal: focal spread $\Delta = C_c \sqrt{\frac{\Delta E^2}{E^2} + 2\frac{\Delta I^2}{I^2}}$

Effect of Partial Coherence in TEM

While coherent aberrations mingle amplitude and phase information in the images, partial coherence destroys information within the image all together.

Finite values of Δ and α are a result of limited (partial) **temporal (longitudinal)** and **spatial (transversal)** coherence as well as chromatic aberrations.

The Transfer Cross Coefficient (TCC)

The quasi-coherent approximation

Spatial Coherence Envelope Function:

Temporal Coherence Envelope Function:

$$E_{s}(q) = \exp\left(-\left(\frac{\alpha}{2\lambda}\frac{\delta\chi(q)}{\delta q}\right)^{2}\right)$$
$$E_{\Delta}(q) = \exp\left(-2(\pi\Delta_{f})^{2}\left[\frac{\delta\chi(q')}{\delta\Delta f}\right]^{2}\right)$$

$$I(\vec{r}) = \left| \mathrm{FT}^{-1} \left[\Psi_0(\vec{q}) exp(-i\chi(q)) \mathbf{E}_{\Delta}(\boldsymbol{q}) \mathbf{E}_s(q) \right] \right|^2$$

Problem: Multiplying the complex wave function with an envelope cuts away electrons! (which is unphysical)

Will assume:

1. (dispersion free) monochromator: energy width 90meV => neglect $T_{\Delta}(q+q',q')$ 2. C_s -corrector => $\chi(q) = \pi \cdot \lambda \cdot \Delta f \cdot q^2$

Flux preservation important at large Δf

The **TCC** correctly predicts the presence of **DF images in defocused BF images**

(in the quasi-coherent approximation these electrons would be missing)

Experimental BF images of a Σ 5 grain boundary in SrTiO3. Large Objective aperture, relatively large convergence angle.

⇒ see C.T. Koch, A flux-preserving non-linear inline holography reconstruction algorithm for partially coherent electrons, Ultramicroscopy 108 (2008) 141–150 for details

Partial Spatial Coherence & Defoci

Lines in control file:

alpha_mrad: 0.08 fit alpha: 1 7 % start fitting alpha @ 7-loop (1=on, 0=off)

In this example α will be assumed to be 0.08 mrad for the first iterations, until 7 images are included in the reconstruction.

Starting with the 7-loop alpha will be refined together with the defoci.

frwr3 will also **optimize the defocus** of each image, except for the reference image (the one with the smallest absolute value of the Δf):

fit defocus:

```
2 % 0: never
% 1: only in final refinement loop
% 2: start after the 3-loop
% 3: start in 3-loop
% 4: right after the first 2-loop
% 5: already in the very first 2-loop
```

Towards Full-Resolution Inline Holography (FRIH)

Features of the FRWR (full-resolution wave reconstruction) software:

- Non-linear defocus increments
- Fully automated acquisition in DM
- Setup of reconstruction in DM
- Compensation of distortions induced by changes in objective lens current
- Phase prediction applies a variant of the TIE with (I^{exp}-I^{sim})/df as input
- Flux-preserving model for partial spatial coherence
- Fitting of incoherent background (mimics incoherent scattering)
- Different regularization functions for ,improving' low spatial frequencies

Regularization by, e.g. Gradient Flipping

Conventional reconstruction algorithm

Regularized reconstruction

Further details in the following 3 papers:

- A. Parvizi, W. Van den Broek, CTK, "Recovering low spatial frequencies in wavefront sensing based on intensity measurements "Advanced Structural and Chemical Imaging (2016) accepted
- A. Parvizi, W. Van den Broek, CTK, "The gradient flipping algorithm: introducing non-convex constraints in wavefront reconstructions with the transport of intensity equation", Optics Express (2016) accepted
- C. Ozsoy Keskinbora et al. "Full-resolution high-contrast imaging of phase objects by gradient-flipping assisted full-resolution wave reconstruction" (to be submitted)
How to apply Gradient Flipping (GF)

Section of the control file:


```
% Gradient flipping (GF):
apply GF: 1
GF flipping frequency: 3
GF beta: 0.85
GF signal fraction: 0.92
GF adjust fraction:
                     1
GF min signal fraction: 0.8
GF length scale (nm): 1
GF order: 1 % order=3 means flipping dx^2+dy^2 and dxdy
GF 3rd order fraction: 0
%% end of gradient flipping
```

Turn GF on/off Apply GF every 3rd iteration Mixing fraction of flipped & unflipped phase Initial value for fraction of pixels to be flipped

Minimium fraction of pixels to be flipped GF threshold: 0.01 % will be adjusted Initial value for the flipping threshold Flipping only affects spatial frequencies below this (experimental)

Always verify the reconstruction

Some Additional Parameters

% config file for frwr3 reconstruction

Decide how much to print print level: 2 Decide how much to save 2 save level: shift trials: 1 % try for N best alignments at start max shift: 12 % pixels between sucessive images max shift global: 20 % pixels between any image and ref. % first frame: % define this image as reference 6 max defocus: 70000 % image with a larger defocus will be excluded Feedback parameter (< 0.5) fit incoherent background: 1 0.1 0.9 Parameters for alignment: bandpass filter low: 0.04 Avoids low-frequency artefacts (e.g. moving bend contours) Avoids high frequency noise bandpass filter high: 0.4 exponent:

```
% 1=cross, 0.5=mutual, 0=phase corr.
0.4
```

Nedge for smoothing: 30

50

Nedge: