

Applications using HOLZ lines

HOLZ lines are produced by very long reciprocal lattice vectors \mathbf{g}_{HOLZ} . Their position is therefore extremely sensitive to changes in **lattice parameters** and /or the electron **wavelength** and thus the high voltage.

A few applications:

- 1. Very precise sample orientation: HOLZ line patterns are very sensitive to tilt.
- 2. Determination of 3D lattice parameters from a single CBED pattern.
- **3. Strain mapping**: CBED patterns are recorded as a fine beam rasters across the sample. Strain (local changes in lattice constants) is determined by relative shifts of the HOLZ lines.
- **4. Calibration of the high voltage of the microscope**: The relative position of HOLZ lines depends on the radius of the Ewald sphere and thus the accelerating voltage of the microscope (can be determined to <1V accuracy).
- **5.** Determination of 3D symmetry: ZOLZ diffraction data shows the symmetry of the projected structure, HOLZ lines carry 3D information.
- 6. Analysis of defects ... (to be discussed later)

Note: Dynamical scattering (multiple eleastic scattering) may shift HOLZ line positions. The usage of dynamical diffraction theory (e.g. Bloch wave method) is therefore necessary for quantitative HOLZ line analysis.

Max-Planck Institut für Metallforschung

Homework: Space Group 227 (diamond structure)		
Description:	Elemental Si	
Select Crystal System:	Cubic	
Select Space Group:	Fd-3m (227-2) 💌	
Input Unit Cell Lattice Parameters (Angstroms/degrees):		
a: 5.4307 b: 5.4307	c: 5.4307	
alpha: 90 beta: 90	gamma: 90	
Input atom Positions (equivalent positions generated automatically):		
Atom Positions: (Note: for CIF file imports, anisotropic temperature data, b _{ij} may also be encoded as D-W)		
1: EL:Si, x:0.125, y:0.125, z:0.125, D-W:0.4668, occ:1.00		
Screenshot from WEBEMAPS (http://emaps.mrl.uiuc.edu/emaps.asp)		
Max-Planck Institut für Meta	Ilforschung	Universität Stuttgart