

Zemlin Tableau							
Tilt = (-1.5,-1.5)mrad	The Zemlin tableau is a series of diffractograms recorded at different illumination tilt angles. It allows evaluation of even and odd aberrations, which is not possible without tilt.						
Tilt = (-2,0)mrad	rad Tilt = (2,0)mrad						
	Defocus Cs: Astigmatism: Field Curvature: Coma: S-fold Astigm.:	-65.7 m 1.2 m 20 m 0 10 0 8 0	m m 25 c m 15	deg deg deg			
Tilt = (0,-2)mrad Max-Planck Institut für Metallforschung	Universi	tät Stuttg	art				

Comparison of Electron Sources						
	W	Lab6	Schottky-FEG	Cold-FEG		
Work function f	4.5 eV	2.4 eV	2.8eV	4.5 eV		
Temperature T	2700 K	1700 K	1800K	300 K		
Current density j_c	1-3 A/cm ²	20-50 A/cm ²	500 A/cm ²	10 ⁵ 10 ⁶ A/cm ²		
Crossover Ø	50 µm	10 µm	≈ 10nm	≈ 2.5nm		
Brightness	10 ⁵ A/m²/sr	10 ⁶ A/cm ² /sr	10 ⁸ A/cm ² /sr	10 ⁹ A/cm ² /sr		
Energy Width	3 eV	1,5 eV	0.7eV	0,3 eV		
Current stability	< 1 %/h	< 1 %/h	< 1 %/h	5 %/h		
Vacuum	10 ⁻² Pa	10 ⁻⁴ Pa	10 ⁻⁶ Pa	10 ⁻⁸ Pa		
Life time	100 h	500 h	> 1000 h	> 1000 h		
Max-Planck Institut für Metallforschung Universität Stuttgart						

