









Step 5: Setting up microscopy parameters	
Microscope parameters High voltage: 200 kV (wavelength = 2.51pm) Defocus: -61.3 nm Scherzer Astigmatism: 0 nm, angle: 0 deg Spherical Aberr. C3: 1 mm, C5: m m Temperature: 300 K, TDS runs: 30 ¥ TDS Cc: 1.0 mm, dE: 0.6 eV Convergence angle: 15 mrad Detectors:	will be missing
Compute intermediate images every N Add, delete, and modify detectors (default: 1: 70 200 mrad, 2: 0 40 mrad). Detectors can also be shifted in the diffraction plane.	Slices Energy spread of source. Define a folder for saving images, wave functions, and diffraction patterns. QSTEM Tutorial

Step 6: Save and run 1. Save the configuration to a file using "Save Config" 2. Run the just saved (or any other) configuration using "Start Simulation" (Note: many different configurations may be run simultaneously [makes sense on a multiprocessor machine], but they all should have different output folders, otherwise, their results will be overwritten) C:\WINDOWS\system32\cmd.exe - 🗆 🗙 Running program S-TEM (built 12/4/02) in STEM mode Date: 2007:12:01, Time: 23:22:27 Print level: Save level: Input file: Data folder: (created) 3 Si3N4.cfg ./D:\Christoph\Matlab\QSTEM\qsi Select config file to execute **2** X Created) Size of Cube: Cube size adjusted: Super cell: Number of atoms: Crystal tilt: Model dimensions: ax=40 by=45 cz=29.023 ax=40 by=45 cz=29.023 no 1 x 1 x 10 unit cells 5003 (super cell) x=0deg, y=0deg, z=0deg ax=400, by=450, cz=29.023A (af sampled every 0.07 x 0.07 x 1.2 (Z=14, y=150, close) 10 (in z direction) non-equal 20 (ilistis thick slices (not 30 (fists method) (1.07, 3.5, 0.72555)A (x,y): no. z: no 400 x 400 200 (lambda=0.0250793A) 1 mm_ Suchen in: 🗀 Examples 💽 🗢 🖻 🖶 💌 C SI3N4 stem_STOnoTilt.dat 🛅 Si3N4 linescan Test.dat (af stem_probetest.dat om species: per cell divisions: ices per division: put every: tential: t. array offset: tential periodic: are: 🔊 stem_Si3N4.dat 🔊 stem_Si3N4_linescan.dat stem_STO_101.dat R . voltage: Öffnen 20e 1 mm -61.3 nm -9m, Ø deg Dateiname: stem Si3N4.dat (C_s): (Defocus): igmatism: -61.5 Ø nm, Ø 1 mm 15 mrad STEM config files (*.dat) Dateitvo: • Abbrechen :: rture half angle: aperture: am current: **QSTEM** Tutorial

Exercise 1: Effect of probe astigmatism	
1. Load the configuration file "stem_probetest.dat" This sets up a single slice without any potential in it (it is still necessary to have a super-cell as large as the scan window though). It also turns off TDS, since we only want to look at the wave function anyway.	
2. Change the astigmatism magnitude and angle to different settings. Also play with Cs and defocus.	
3. Save the configuration file.	
4. Run the simulation and display the wave function.	
C.T. Koch	QSTEM Tutorial

