

	M Displaying Tex	t 🛞
	result("pi="+Pi()+"\n")	
	term Results welcome to DigitalMicrograph. 16.04.2007, 09:25:10 pi=3.14159	
	C Untitled C X result("pi="+Pi()+"\n")	
-	<pre>Command Window To get started, select <u>MATLAB Help</u> or <u>Demos</u> from the Help menu. >> p1 ans = 3.1416 >> fprintf('Pi=%f\n',pi) Pi=3.141593 >> </pre>	
		MPI for Intelligent Systems

Results
<pre>welcome to DigitalMicrograph. 17.04.2007, 07:49:40 a = 2 + 3 i b = -1 + 1.5 i a+b = 2 + 3 i-1 + 1.5 i Wrong! a = 2 + 3 i b = -1 + 1.5 i a+b = 1 + 4.5 i</pre>
Complexnumber a=complex(2,3), b=complex(-1,1.5); result("a = "+a+" b = "+b+" a+b = "+a+b+"\n"); result("a = "+a+" b = "+b+" a+b = "+(a+b)+"\n"); Don't forget your parentheses!!!
Command Window >> a=2+3*i; >> b=-1+1.5*i; >> a+b ans = 1.0000 + 4.5000i >>

STEM	On the	e fly data manipulation		
	Makes sen	ise if script is only used once !		
Untitled showimage(B*(-1))		B: testSpectrumProfile		
 Images may be addressed in a script by the letter assigned to the window they are shown in. If a new image is generated (e.g. by performing some operation on the image), this image will receive a new letter (image variable) 				
			n oystems	

Definition of Convolution

$$f \otimes g = \int_{-\infty}^{\infty} f(r') \cdot g(r-r') dr'$$
2D $f \otimes g = \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} f(x', y') \cdot g(x-x', y-y') dx' dy'$
In general, the value of F(r)=f(r) (s)g(r) depends on the values of f(r) and g(r) for all r, i.e. across the whole image
Convolution Theorem: $f \otimes g = FT^{-1}[FT(f)FT(g)]$

Stem Computing the gradient by convolution					
Real space: $\frac{df}{dx} = \frac{f_{i+1} - f_i}{\Delta x} = f \otimes D_x^1 \qquad D_x^1 = (1)$	-1)				
or $\frac{df}{dx} = \frac{f_{i+1} - f_{i-1}}{2 \cdot \Delta x} = f \otimes D_x^1$ $D_x^1 = (1)$	0 -1)				
Reciprocal space: $ \frac{df}{dx} = \frac{d}{dx} \sum F_q \cdot e^{2\pi i qx} $ $ = \sum F_q \cdot 2\pi i q \cdot e^{2\pi i qx} $ $ = \sum F_q \cdot 2\pi i q \cdot e^{2\pi i qx} $					
$\Rightarrow \frac{dx}{dx} = FI \{2\pi i \cdot FI \mid j \cdot q\}$					
$[F_q = Fourier \text{ components of } f(x)]$					
MPI for Intelligent Systems					

Computing the Laplacian by convolutionReal space:
$$\Delta f(x,y) = \frac{\partial^2 f(x,y)}{\partial x^2} + \frac{\partial^2 f(x,y)}{\partial y^2}$$
$$\Delta f(x,y) = f \otimes D_{xy}^2 \quad D_{xy}^2 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
Reciprocal space:
$$\Delta f = \left(\frac{d^2}{dx^2} + \frac{d^2}{dy^2}\right) \sum F_{q_x,q_y} \cdot e^{2\pi i (q_x x + q_y y)}$$
$$= -4\pi^2 \sum \left(q_x^2 + q_y^2\right) \cdot F_{q_x,q_y} \cdot e^{2\pi i (q_x x + q_y y)}$$
$$\Rightarrow \Delta f = FT^{-1} \left\{ -4\pi^2 \cdot FT[f] \cdot \left(q_x^2 + q_y^2\right) \right\}$$

