Direkt zum InhaltDirekt zur SucheDirekt zur Navigation
▼ Zielgruppen ▼

Humboldt-Universität zu Berlin - Mathematisch-Naturwissen­schaft­liche Fakultät - Institut für Physik

Humboldt-Universität zu Berlin | Mathematisch-Naturwissen­schaft­liche Fakultät | Institut für Physik | Kolloquium | Alle Termine | Institutskolloquium: Prof. Dr. Johanna Erdmenger (Universität Würzburg)

Institutskolloquium: Prof. Dr. Johanna Erdmenger (Universität Würzburg)

Vortrag zum Thema "Relating the quantum structure of black holes to quantum information"
Wann 03.12.2019 von 15:15 bis 17:00 (Europe/Berlin / UTC100) iCal
Wo Lise-Meitner-Haus, Christian-Gerthsen-Hörsaal, Newtonstraße 15, 12489 Berlin

Institutskolloquium: Prof. Dr. Johanna Erdmenger (Theoretische Physik III, Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg) spricht zum Thema "Relating the quantum structure of black holes to quantum information".

Abstract

In spite of important developments over the last decades, the quantum properties of black holes are still poorly understood. One aspect of this issue is the still incomplete understanding of how information is stored and evolves inside a black hole. A new approach to these questions is provided by gauge/gravity duality. A duality is a map between two theories that describe the same physical system. Gauge/gravity duality is special since it maps a quantum field theory to a gravity theory. This duality has been extended to include concepts from quantum information theory. A significant breakthrough was obtained by Ryu and Takayanagi by establishing a map between entanglement in quantum field theory and the length of geodesics in the dual gravity theory. Currently, significant new insight is gained by establishing a duality relation for complexity. This concept from quantum information theory counts the number of quantum operations required to reach a given quantum state from a reference state.

In the talk I will introduce the relevant questions, approaches and new results that provide a new fruitful relation between black hole physics and quantum information theory.